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particle in a box potential
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Physical Setup

A particle of mass m is confined to a one-dimensional box of length L.

The potential energy is defined as:

V (x) =

{
0 if 0 < x < L

∞ if x ≤ 0 or x ≥ L

The particle cannot exist outside the box.

This is an idealized model but captures essential features of quantization.
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Solving the Schrödinger Equation

We solve the time-independent Schrödinger equation in the region 0 < x < L:

− ℏ2

2m

d2ψ(x)

dx2
= Eψ(x) ⇒ d2ψ(x)

dx2
+ k2ψ(x) = 0

where k2 = 2mE
ℏ2 .

General solution: ψ(x) = A sin(kx) + B cos(kx)
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Applying Boundary Conditions

Boundary conditions:

At x = 0: ψ(0) = B = 0

At x = L: ψ(L) = A sin(kL) = 0 ⇒ sin(kL) = 0 ⇒ kL = nπ

⇒ k =
nπ

L
, n = 1, 2, 3, . . .

Therefore,

ψn(x) = An sin
(nπx

L

)
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Normalization

Require:∫ L

0
|ψn(x)|2dx = 1 ⇒ |An|2

∫ L

0
sin2

(nπx
L

)
dx = 1

Using:∫ L

0
sin2

(nπx
L

)
dx =

L

2
⇒ An =

√
2

L

Thus,

ψn(x) =

√
2

L
sin

(nπx
L

)
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Energy Quantization

Substituting k = nπ
L into the energy expression:

En =
ℏ2k2

2m
=

n2π2ℏ2

2mL2

Energies are discrete (quantized) and increase as n2.

The ground state (n = 1) has non-zero energy — the zero-point energy:

E1 =
π2ℏ2

2mL2
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Wavefunction Properties

ψn(x) has (n − 1) nodes (zero crossings) inside the box.

All wavefunctions are orthogonal:∫ L

0
ψm(x)ψn(x)dx = δmn

They form a complete set — any function satisfying the boundary conditions can be
expanded in this basis.
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Visualizing Wavefunctions
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Time-Dependent Solutions

Time evolution:

Ψn(x , t) = ψn(x)e
−iEnt/ℏ

Each eigenstate evolves with a phase factor.

A general state:

Ψ(x , t) =
∑
n

cnψn(x)e
−iEnt/ℏ

Coefficients cn determined by initial condition.
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Expectation Value of Position

⟨x⟩n =

∫ L

0
x |ψn(x)|2dx =

L

2

Due to symmetry of the potential and wavefunctions.
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Expectation Value of Momentum

⟨p⟩n =

∫ L

0
ψ∗
n(x)

(
−iℏ

d

dx

)
ψn(x)dx = 0

⟨p2⟩n =

∫ L

0
ψ∗
n(x)

(
−ℏ2

d2

dx2

)
ψn(x)dx =

(
nπℏ
L

)2
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Uncertainty Principle

Compute:

∆x =
√
⟨x2⟩ − ⟨x⟩2, ∆p =

√
⟨p2⟩ − ⟨p⟩2

For n = 1, one finds:

∆x ≈ 0.18L, ∆p ≈ πℏ
L

⇒ ∆x∆p ≈ 0.18πℏ >
ℏ
2
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Applications of the Model

Electron in a quantum dot or nanowire.

Modeling of particle confinement in nanostructures.

Insight into quantization and boundary effects.
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Conclusion

Analytic solution of particle in a box illustrates core quantum concepts.

Quantized energy, wavefunctions, and expectations obey physical principles.

Model serves as foundation for understanding more complex systems.
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Slide 1: Basic Wavefunction and Energy

1 Given a 1D infinite potential well of width L, find the normalized wavefunction ψn(x) for
the nth energy level.

2 Derive the expression for the energy levels En of a particle in the box.
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Slide 2: Expectation Values

1 Compute the expectation value ⟨x⟩ for the ground state n = 1.

2 Calculate the expectation value ⟨x2⟩ and hence find the standard deviation ∆x .
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Slide 3: Momentum and Uncertainty

1 Show that ⟨p⟩ = 0 for any state n in the infinite potential well.

2 Find ⟨p2⟩ and compute the momentum uncertainty ∆p.
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Slide 4: Orthogonality and Superposition

1 Prove that the wavefunctions ψn(x) and ψm(x) are orthogonal for n ̸= m.

2 Consider the superposition Ψ(x , t) = 1√
2
(ψ1(x)e

−iE1t/ℏ + ψ2(x)e
−iE2t/ℏ). Find the

probability density |Ψ(x , t)|2.
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Slide 5: Numerical and Applied Problems

1 For an electron in a box of width L = 1 nm, compute the energy of the first three
quantum states.

2 If a particle in a box is in a superposition of ψ1 and ψ3 with equal probability amplitudes,
what is the expected value ⟨x⟩ at t = 0?
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Slide 6: Advanced Challenge

Deep Conceptual Problem:
A particle is placed in a 1D infinite potential well of width L. At t = 0, its wavefunction is

given by:

Ψ(x , 0) =

{√
30
L5
x(L− x) for 0 < x < L,

0 otherwise

1 Show that this wavefunction is normalized.

2 Expand Ψ(x , 0) in terms of the stationary states ψn(x).

3 Compute the probability of finding the particle in the first excited state.

4 Determine Ψ(x , t).

5 Discuss the time-dependence of the probability density |Ψ(x , t)|2 and whether it exhibits
any periodicity.
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