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C H A P T E R

1 Vector Analysis

1.1 VECTOR ALGEBRA

1.1.1 Vector Operations

If you walk 4 miles due north and then 3 miles due east (Fig. 1.1), you will have
gone a total of 7 miles, but you’re not 7 miles from where you set out—you’re
only 5. We need an arithmetic to describe quantities like this, which evidently do
not add in the ordinary way. The reason they don’t, of course, is that displace-
ments (straight line segments going from one point to another) have direction
as well as magnitude (length), and it is essential to take both into account when
you combine them. Such objects are called vectors: velocity, acceleration, force
and momentum are other examples. By contrast, quantities that have magnitude
but no direction are called scalars: examples include mass, charge, density, and
temperature.

I shall use boldface (A, B, and so on) for vectors and ordinary type for scalars.
The magnitude of a vector A is written |A| or, more simply, A. In diagrams, vec-
tors are denoted by arrows: the length of the arrow is proportional to the magni-
tude of the vector, and the arrowhead indicates its direction. Minus A (−A) is a
vector with the same magnitude as A but of opposite direction (Fig. 1.2). Note that
vectors have magnitude and direction but not location: a displacement of 4 miles
due north from Washington is represented by the same vector as a displacement 4
miles north from Baltimore (neglecting, of course, the curvature of the earth). On
a diagram, therefore, you can slide the arrow around at will, as long as you don’t
change its length or direction.

We define four vector operations: addition and three kinds of multiplication.
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(i) Addition of two vectors. Place the tail of B at the head of A; the sum,
A + B, is the vector from the tail of A to the head of B (Fig. 1.3). (This rule
generalizes the obvious procedure for combining two displacements.) Addition is
commutative:

A + B = B + A;
3 miles east followed by 4 miles north gets you to the same place as 4 miles north
followed by 3 miles east. Addition is also associative:

(A + B) + C = A + (B + C).

To subtract a vector, add its opposite (Fig. 1.4):

A − B = A + (−B).

(ii) Multiplication by a scalar. Multiplication of a vector by a positive scalar
a multiplies the magnitude but leaves the direction unchanged (Fig. 1.5). (If a is
negative, the direction is reversed.) Scalar multiplication is distributive:

a(A + B) = aA + aB.

(iii) Dot product of two vectors. The dot product of two vectors is defined by

A · B ≡ AB cos θ, (1.1)

where θ is the angle they form when placed tail-to-tail (Fig. 1.6). Note that A · B
is itself a scalar (hence the alternative name scalar product). The dot product is
commutative,

A · B = B · A,

and distributive,

A · (B + C) = A · B + A · C. (1.2)

Geometrically, A · B is the product of A times the projection of B along A (or
the product of B times the projection of A along B). If the two vectors are parallel,
then A · B = AB. In particular, for any vector A,

A · A = A2. (1.3)

If A and B are perpendicular, then A · B = 0.
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Example 1.1. Let C = A − B (Fig. 1.7), and calculate the dot product of C with
itself.

Solution

C · C = (A − B) · (A − B) = A · A − A · B − B · A + B · B,

or

C2 = A2 + B2 − 2AB cos θ.

This is the law of cosines.

(iv) Cross product of two vectors. The cross product of two vectors is de-
fined by

A × B ≡ AB sin θ n̂, (1.4)

where n̂ is a unit vector (vector of magnitude 1) pointing perpendicular to the
plane of A and B. (I shall use a hat ( ˆ ) to denote unit vectors.) Of course, there
are two directions perpendicular to any plane: “in” and “out.” The ambiguity is
resolved by the right-hand rule: let your fingers point in the direction of the first
vector and curl around (via the smaller angle) toward the second; then your thumb
indicates the direction of n̂. (In Fig. 1.8, A × B points into the page; B × A points
out of the page.) Note that A × B is itself a vector (hence the alternative name
vector product). The cross product is distributive,

A × (B + C) = (A × B) + (A × C), (1.5)

but not commutative. In fact,

(B × A) = −(A × B). (1.6)
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Geometrically, |A × B| is the area of the parallelogram generated by A and B
(Fig. 1.8). If two vectors are parallel, their cross product is zero. In particular,

A × A = 0

for any vector A. (Here 0 is the zero vector, with magnitude 0.)

Problem 1.1 Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams,
show that the dot product and cross product are distributive,

a) when the three vectors are coplanar;

b) in the general case.!

Problem 1.2 Is the cross product associative?

(A × B) × C ?= A × (B × C).

If so, prove it; if not, provide a counterexample (the simpler the better).

1.1.2 Vector Algebra: Component Form

In the previous section, I defined the four vector operations (addition, scalar mul-
tiplication, dot product, and cross product) in “abstract” form—that is, without
reference to any particular coordinate system. In practice, it is often easier to set
up Cartesian coordinates x, y, z and work with vector components. Let x̂, ŷ, and
ẑ be unit vectors parallel to the x , y, and z axes, respectively (Fig. 1.9(a)). An
arbitrary vector A can be expanded in terms of these basis vectors (Fig. 1.9(b)):
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A = Ax x̂ + Ay ŷ + Az ẑ.

The numbers Ax , Ay , and Az , are the “components” of A; geometrically, they
are the projections of A along the three coordinate axes (Ax = A · x̂, Ay = A · ŷ,
Az = A · ẑ). We can now reformulate each of the four vector operations as a rule
for manipulating components:

A + B = (Ax x̂ + Ay ŷ + Az ẑ) + (Bx x̂ + By ŷ + Bz ẑ)

= (Ax + Bx )x̂ + (Ay + By)ŷ + (Az + Bz)ẑ. (1.7)

Rule (i): To add vectors, add like components.

aA = (a Ax )x̂ + (a Ay)ŷ + (a Az)ẑ. (1.8)

Rule (ii): To multiply by a scalar, multiply each component.

Because x̂, ŷ, and ẑ are mutually perpendicular unit vectors,

x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1; x̂ · ŷ = x̂ · ẑ = ŷ · ẑ = 0. (1.9)

Accordingly,

A · B = (Ax x̂ + Ay ŷ + Az ẑ) · (Bx x̂ + By ŷ + Bz ẑ)

= Ax Bx + Ay By + Az Bz . (1.10)

Rule (iii): To calculate the dot product, multiply like components, and add.
In particular,

A · A = A2
x + A2

y + A2
z ,

so

A =
√

A2
x + A2

y + A2
z . (1.11)

(This is, if you like, the three-dimensional generalization of the Pythagorean
theorem.)

Similarly,1

x̂ × x̂ = ŷ × ŷ = ẑ × ẑ = 0,

x̂ × ŷ = −ŷ × x̂ = ẑ,

ŷ × ẑ = −ẑ × ŷ = x̂,

ẑ × x̂ = −x̂ × ẑ = ŷ. (1.12)

1These signs pertain to a right-handed coordinate system (x-axis out of the page, y-axis to the right,
z-axis up, or any rotated version thereof). In a left-handed system (z-axis down), the signs would be
reversed: x̂ × ŷ = −ẑ, and so on. We shall use right-handed systems exclusively.



6 Chapter 1 Vector Analysis

Therefore,

A × B = (Ax x̂ + Ay ŷ + Az ẑ) × (Bx x̂ + By ŷ + Bz ẑ) (1.13)

= (Ay Bz − Az By)x̂ + (Az Bx − Ax Bz)ŷ + (Ax By − Ay Bx )ẑ.

This cumbersome expression can be written more neatly as a determinant:

A × B =
∣∣∣∣∣∣

x̂ ŷ ẑ
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ . (1.14)

Rule (iv): To calculate the cross product, form the determinant whose first row
is x̂, ŷ, ẑ, whose second row is A (in component form), and whose third row is B.

Example 1.2. Find the angle between the face diagonals of a cube.

Solution
We might as well use a cube of side 1, and place it as shown in Fig. 1.10, with
one corner at the origin. The face diagonals A and B are

A = 1 x̂ + 0 ŷ + 1 ẑ; B = 0 x̂ + 1 ŷ + 1 ẑ.

z

θ
A

B
(0, 0, 1)

y
(0, 1, 0)

x (1, 0, 0)

FIGURE 1.10

So, in component form,

A · B = 1 · 0 + 0 · 1 + 1 · 1 = 1.

On the other hand, in “abstract” form,

A · B = AB cos θ = √
2
√

2 cos θ = 2 cos θ.

Therefore,

cos θ = 1/2, or θ = 60◦.

Of course, you can get the answer more easily by drawing in a diagonal across
the top of the cube, completing the equilateral triangle. But in cases where the
geometry is not so simple, this device of comparing the abstract and component
forms of the dot product can be a very efficient means of finding angles.
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Problem 1.3 Find the angle between the body diagonals of a cube.

Problem 1.4 Use the cross product to find the components of the unit vector n̂
perpendicular to the shaded plane in Fig. 1.11.

1.1.3 Triple Products

Since the cross product of two vectors is itself a vector, it can be dotted or crossed
with a third vector to form a triple product.

(i) Scalar triple product: A · (B × C). Geometrically, |A · (B × C)| is the
volume of the parallelepiped generated by A, B, and C, since |B × C| is the area
of the base, and |A cos θ | is the altitude (Fig. 1.12). Evidently,

A · (B × C) = B · (C × A) = C · (A × B), (1.15)

for they all correspond to the same figure. Note that “alphabetical” order is
preserved—in view of Eq. 1.6, the “nonalphabetical” triple products,

A · (C × B) = B · (A × C) = C · (B × A),

have the opposite sign. In component form,

A · (B × C) =
∣∣∣∣∣∣

Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣ . (1.16)

Note that the dot and cross can be interchanged:

A · (B × C) = (A × B) · C

(this follows immediately from Eq. 1.15); however, the placement of the parenthe-
ses is critical: (A · B) × C is a meaningless expression—you can’t make a cross
product from a scalar and a vector.
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(ii) Vector triple product: A × (B × C). The vector triple product can be
simplified by the so-called BAC-CAB rule:

A × (B × C) = B(A · C) − C(A · B). (1.17)

Notice that

(A × B) × C = −C × (A × B) = −A(B · C) + B(A · C)

is an entirely different vector (cross-products are not associative). All higher vec-
tor products can be similarly reduced, often by repeated application of Eq. 1.17,
so it is never necessary for an expression to contain more than one cross product
in any term. For instance,

(A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C);
A × [B × (C × D)] = B[A · (C × D)] − (A · B)(C × D). (1.18)

Problem 1.5 Prove the BAC-CAB rule by writing out both sides in component
form.

Problem 1.6 Prove that

[A × (B × C)] + [B × (C × A)] + [C × (A × B)] = 0.

Under what conditions does A × (B × C) = (A × B) × C?

1.1.4 Position, Displacement, and Separation Vectors

The location of a point in three dimensions can be described by listing its
Cartesian coordinates (x, y, z). The vector to that point from the origin (O)
is called the position vector (Fig. 1.13):

r ≡ x x̂ + y ŷ + z ẑ. (1.19)

r

y

z

z

yx

x

(x, y, z)

r

O

FIGURE 1.13
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O

FIGURE 1.14
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I will reserve the letter r for this purpose, throughout the book. Its magnitude,

r =
√

x2 + y2 + z2, (1.20)

is the distance from the origin, and

r̂ = r
r

= x x̂ + y ŷ + z ẑ√
x2 + y2 + z2

(1.21)

is a unit vector pointing radially outward. The infinitesimal displacement vector,
from (x, y, z) to (x + dx, y + dy, z + dz), is

dl = dx x̂ + dy ŷ + dz ẑ. (1.22)

(We could call this dr, since that’s what it is, but it is useful to have a special
notation for infinitesimal displacements.)

In electrodynamics, one frequently encounters problems involving two
points—typically, a source point, r′, where an electric charge is located, and
a field point, r, at which you are calculating the electric or magnetic field
(Fig. 1.14). It pays to adopt right from the start some short-hand notation for
the separation vector from the source point to the field point. I shall use for this
purpose the script letter r:

r ≡ r − r′. (1.23)

Its magnitude is

r = |r − r′|, (1.24)

and a unit vector in the direction from r′ to r is

r̂ = r
r = r − r′

|r − r′| . (1.25)

In Cartesian coordinates,

r = (x − x ′)x̂ + (y − y′)ŷ + (z − z′)ẑ, (1.26)

r =
√

(x − x ′)2 + (y − y′)2 + (z − z′)2, (1.27)

r̂ = (x − x ′)x̂ + (y − y′)ŷ + (z − z′)ẑ√
(x − x ′)2 + (y − y′)2 + (z − z′)2

(1.28)

(from which you can appreciate the economy of the script-r notation).

Problem 1.7 Find the separation vector r from the source point (2,8,7) to the field
point (4,6,8). Determine its magnitude (r), and construct the unit vector r̂.
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1.1.5 How Vectors Transform2

The definition of a vector as “a quantity with a magnitude and direction” is not
altogether satisfactory: What precisely does “direction” mean? This may seem a
pedantic question, but we shall soon encounter a species of derivative that looks
rather like a vector, and we’ll want to know for sure whether it is one.

You might be inclined to say that a vector is anything that has three components
that combine properly under addition. Well, how about this: We have a barrel of
fruit that contains Nx pears, Ny apples, and Nz bananas. Is N = Nx x̂ + Ny ŷ +
Nz ẑ a vector? It has three components, and when you add another barrel with
Mx pears, My apples, and Mz bananas the result is (Nx + Mx ) pears, (Ny + My)

apples, (Nz + Mz) bananas. So it does add like a vector. Yet it’s obviously not
a vector, in the physicist’s sense of the word, because it doesn’t really have a
direction. What exactly is wrong with it?

The answer is that N does not transform properly when you change coordi-
nates. The coordinate frame we use to describe positions in space is of course
entirely arbitrary, but there is a specific geometrical transformation law for con-
verting vector components from one frame to another. Suppose, for instance, the
x, y, z system is rotated by angle φ, relative to x, y, z, about the common x = x
axes. From Fig. 1.15,

Ay = A cos θ, Az = A sin θ,

while

Ay = A cos θ = A cos(θ − φ) = A(cos θ cos φ + sin θ sin φ)

= cos φ Ay + sin φ Az,

Az = A sin θ = A sin(θ − φ) = A(sin θ cos φ − cos θ sin φ)

= − sin φ Ay + cos φ Az .

y

z

θ φ

A y

z

θ

FIGURE 1.15

2This section can be skipped without loss of continuity.
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We might express this conclusion in matrix notation:

(
Ay

Az

)
=

(
cos φ sin φ

− sin φ cos φ

)(
Ay

Az

)
. (1.29)

More generally, for rotation about an arbitrary axis in three dimensions, the
transformation law takes the form

⎛
⎝ Ax

Ay

Az

⎞
⎠ =

⎛
⎝ Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

⎞
⎠

⎛
⎝ Ax

Ay

Az

⎞
⎠ , (1.30)

or, more compactly,

Ai =
3∑

j=1

Ri j A j , (1.31)

where the index 1 stands for x , 2 for y, and 3 for z. The elements of the ma-
trix R can be ascertained, for a given rotation, by the same sort of trigonometric
arguments as we used for a rotation about the x axis.

Now: Do the components of N transform in this way? Of course not—it doesn’t
matter what coordinates you use to represent positions in space; there are still just
as many apples in the barrel. You can’t convert a pear into a banana by choosing
a different set of axes, but you can turn Ax into Ay . Formally, then, a vector is
any set of three components that transforms in the same manner as a displace-
ment when you change coordinates. As always, displacement is the model for the
behavior of all vectors.3

By the way, a (second-rank) tensor is a quantity with nine components, Txx ,
Txy , Txz , Tyx , . . . , Tzz , which transform with two factors of R:

T xx = Rxx (Rxx Txx + Rxy Txy + Rxz Txz)

+ Rxy(Rxx Tyx + Rxy Tyy + Rxz Tyz)

+ Rxz(Rxx Tzx + Rxy Tzy + Rxz Tzz), . . .

or, more compactly,

T i j =
3∑

k=1

3∑
l=1

Rik R jl Tkl . (1.32)

3If you’re a mathematician you might want to contemplate generalized vector spaces in which the
“axes” have nothing to do with direction and the basis vectors are no longer x̂, ŷ, and ẑ (indeed, there
may be more than three dimensions). This is the subject of linear algebra. But for our purposes all
vectors live in ordinary 3-space (or, in Chapter 12, in 4-dimensional space-time.)
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In general, an nth-rank tensor has n indices and 3n components, and transforms
with n factors of R. In this hierarchy, a vector is a tensor of rank 1, and a scalar is
a tensor of rank zero.4

Problem 1.8

(a) Prove that the two-dimensional rotation matrix (Eq. 1.29) preserves dot prod-
ucts. (That is, show that Ay B y + Az Bz = Ay By + Az Bz .)

(b) What constraints must the elements (Ri j ) of the three-dimensional rotation ma-
trix (Eq. 1.30) satisfy, in order to preserve the length of A (for all vectors A)?

Problem 1.9 Find the transformation matrix R that describes a rotation by 120◦

about an axis from the origin through the point (1, 1, 1). The rotation is clockwise
as you look down the axis toward the origin.

Problem 1.10

(a) How do the components of a vector5 transform under a translation of coordi-
nates (x = x , y = y − a, z = z, Fig. 1.16a)?

(b) How do the components of a vector transform under an inversion of coordinates
(x = −x , y = −y, z = −z, Fig. 1.16b)?

(c) How do the components of a cross product (Eq. 1.13) transform under inver-
sion? [The cross-product of two vectors is properly called a pseudovector be-
cause of this “anomalous” behavior.] Is the cross product of two pseudovectors
a vector, or a pseudovector? Name two pseudovector quantities in classical me-
chanics.

(d) How does the scalar triple product of three vectors transform under inversions?
(Such an object is called a pseudoscalar.)

y

z

x x

z

(a)

ya }

z

(b)

y

x

x

z

y

FIGURE 1.16

4A scalar does not change when you change coordinates. In particular, the components of a vector are
not scalars, but the magnitude is.
5Beware: The vector r (Eq. 1.19) goes from a specific point in space (the origin, O) to the point
P = (x, y, z). Under translations the new origin (Ō) is at a different location, and the arrow from Ō
to P is a completely different vector. The original vector r still goes from O to P , regardless of the
coordinates used to label these points.
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1.2 DIFFERENTIAL CALCULUS

1.2.1 “Ordinary” Derivatives

Suppose we have a function of one variable: f (x). Question: What does the
derivative, d f/dx , do for us? Answer: It tells us how rapidly the function f (x)

varies when we change the argument x by a tiny amount, dx :

d f =
(

d f

dx

)
dx . (1.33)

In words: If we increment x by an infinitesimal amount dx , then f changes
by an amount d f ; the derivative is the proportionality factor. For example, in
Fig. 1.17(a), the function varies slowly with x , and the derivative is correspond-
ingly small. In Fig. 1.17(b), f increases rapidly with x , and the derivative is large,
as you move away from x = 0.

Geometrical Interpretation: The derivative d f/dx is the slope of the graph of
f versus x .

1.2.2 Gradient

Suppose, now, that we have a function of three variables—say, the temperature
T (x, y, z) in this room. (Start out in one corner, and set up a system of axes; then
for each point (x, y, z) in the room, T gives the temperature at that spot.) We want
to generalize the notion of “derivative” to functions like T , which depend not on
one but on three variables.

A derivative is supposed to tell us how fast the function varies, if we move a
little distance. But this time the situation is more complicated, because it depends
on what direction we move: If we go straight up, then the temperature will prob-
ably increase fairly rapidly, but if we move horizontally, it may not change much
at all. In fact, the question “How fast does T vary?” has an infinite number of
answers, one for each direction we might choose to explore.

Fortunately, the problem is not as bad as it looks. A theorem on partial deriva-
tives states that

dT =
(

∂T

∂x

)
dx +

(
∂T

∂y

)
dy +

(
∂T

∂z

)
dz. (1.34)

x

f

(a) x

f

(b)

FIGURE 1.17
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This tells us how T changes when we alter all three variables by the infinites-
imal amounts dx, dy, dz. Notice that we do not require an infinite number of
derivatives—three will suffice: the partial derivatives along each of the three co-
ordinate directions.

Equation 1.34 is reminiscent of a dot product:

dT =
(

∂T

∂x
x̂ + ∂T

∂y
ŷ + ∂T

∂z
ẑ
)

· (dx x̂ + dy ŷ + dz ẑ)

= (∇T ) · (dl), (1.35)

where

∇T ≡ ∂T

∂x
x̂ + ∂T

∂y
ŷ + ∂T

∂z
ẑ (1.36)

is the gradient of T . Note that ∇T is a vector quantity, with three components;
it is the generalized derivative we have been looking for. Equation 1.35 is the
three-dimensional version of Eq. 1.33.

Geometrical Interpretation of the Gradient: Like any vector, the gradient has
magnitude and direction. To determine its geometrical meaning, let’s rewrite the
dot product (Eq. 1.35) using Eq. 1.1:

dT = ∇T · dl = |∇T ||dl| cos θ, (1.37)

where θ is the angle between ∇T and dl. Now, if we fix the magnitude |dl| and
search around in various directions (that is, vary θ ), the maximum change in T
evidentally occurs when θ = 0 (for then cos θ = 1). That is, for a fixed distance
|dl|, dT is greatest when I move in the same direction as ∇T . Thus:

The gradient ∇T points in the direction of maximum increase of the
function T .

Moreover:

The magnitude |∇T | gives the slope (rate of increase) along this
maximal direction.

Imagine you are standing on a hillside. Look all around you, and find the di-
rection of steepest ascent. That is the direction of the gradient. Now measure the
slope in that direction (rise over run). That is the magnitude of the gradient. (Here
the function we’re talking about is the height of the hill, and the coordinates it
depends on are positions—latitude and longitude, say. This function depends on
only two variables, not three, but the geometrical meaning of the gradient is easier
to grasp in two dimensions.) Notice from Eq. 1.37 that the direction of maximum
descent is opposite to the direction of maximum ascent, while at right angles
(θ = 90◦) the slope is zero (the gradient is perpendicular to the contour lines).
You can conceive of surfaces that do not have these properties, but they always
have “kinks” in them, and correspond to nondifferentiable functions.

What would it mean for the gradient to vanish? If ∇T = 0 at (x, y, z),
then dT = 0 for small displacements about the point (x, y, z). This is, then, a
stationary point of the function T (x, y, z). It could be a maximum (a summit),
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a minimum (a valley), a saddle point (a pass), or a “shoulder.” This is analogous
to the situation for functions of one variable, where a vanishing derivative signals
a maximum, a minimum, or an inflection. In particular, if you want to locate the
extrema of a function of three variables, set its gradient equal to zero.

Example 1.3. Find the gradient of r = √
x2 + y2 + z2 (the magnitude of the

position vector).

Solution

∇r = ∂r

∂x
x̂ + ∂r

∂y
ŷ + ∂r

∂z
ẑ

= 1

2

2x√
x2 + y2 + z2

x̂ + 1

2

2y√
x2 + y2 + z2

ŷ + 1

2

2z√
x2 + y2 + z2

ẑ

= x x̂ + y ŷ + z ẑ√
x2 + y2 + z2

= r
r

= r̂.

Does this make sense? Well, it says that the distance from the origin increases
most rapidly in the radial direction, and that its rate of increase in that direction
is 1. . . just what you’d expect.

Problem 1.11 Find the gradients of the following functions:

(a) f (x, y, z) = x2 + y3 + z4.

(b) f (x, y, z) = x2 y3z4.

(c) f (x, y, z) = ex sin(y) ln(z).

Problem 1.12 The height of a certain hill (in feet) is given by

h(x, y) = 10(2xy − 3x2 − 4y2 − 18x + 28y + 12),

where y is the distance (in miles) north, x the distance east of South Hadley.

(a) Where is the top of the hill located?

(b) How high is the hill?

(c) How steep is the slope (in feet per mile) at a point 1 mile north and one mile
east of South Hadley? In what direction is the slope steepest, at that point?

Problem 1.13 Let r be the separation vector from a fixed point (x ′, y′, z′) to the•
point (x, y, z), and let r be its length. Show that

(a) ∇(r2) = 2r.
(b) ∇(1/r) = −r̂/r2.

(c) What is the general formula for ∇(rn)?
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Problem 1.14 Suppose that f is a function of two variables (y and z) only.!
Show that the gradient ∇ f = (∂ f/∂y)ŷ + (∂ f/∂z)ẑ transforms as a vector un-
der rotations, Eq. 1.29. [Hint: (∂ f/∂ y) = (∂ f/∂y)(∂y/∂ y) + (∂ f/∂z)(∂z/∂ y),
and the analogous formula for ∂ f/∂z. We know that y = y cos φ + z sin φ and
z = −y sin φ + z cos φ; “solve” these equations for y and z (as functions of y
and z), and compute the needed derivatives ∂y/∂ y, ∂z/∂ y, etc.]

1.2.3 The Del Operator

The gradient has the formal appearance of a vector, ∇, “multiplying” a scalar T :

∇T =
(

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
T . (1.38)

(For once, I write the unit vectors to the left, just so no one will think this means
∂ x̂/∂x , and so on—which would be zero, since x̂ is constant.) The term in paren-
theses is called del:

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
. (1.39)

Of course, del is not a vector, in the usual sense. Indeed, it doesn’t mean much
until we provide it with a function to act upon. Furthermore, it does not “multiply”
T ; rather, it is an instruction to differentiate what follows. To be precise, then, we
say that ∇ is a vector operator that acts upon T , not a vector that multiplies T .

With this qualification, though, ∇ mimics the behavior of an ordinary vector in
virtually every way; almost anything that can be done with other vectors can also
be done with ∇, if we merely translate “multiply” by “act upon.” So by all means
take the vector appearance of ∇ seriously: it is a marvelous piece of notational
simplification, as you will appreciate if you ever consult Maxwell’s original work
on electromagnetism, written without the benefit of ∇.

Now, an ordinary vector A can multiply in three ways:

1. By a scalar a : Aa;

2. By a vector B, via the dot product: A · B;

3. By a vector B via the cross product: A × B.

Correspondingly, there are three ways the operator ∇ can act:

1. On a scalar function T : ∇T (the gradient);

2. On a vector function v, via the dot product: ∇ · v (the divergence);

3. On a vector function v, via the cross product: ∇ × v (the curl).
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We have already discussed the gradient. In the following sections we examine the
other two vector derivatives: divergence and curl.

1.2.4 The Divergence

From the definition of ∇ we construct the divergence:

∇ · v =
(

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
· (vx x̂ + vy ŷ + vz ẑ)

= ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
. (1.40)

Observe that the divergence of a vector function6 v is itself a scalar ∇ · v.
Geometrical Interpretation: The name divergence is well chosen, for ∇ · v

is a measure of how much the vector v spreads out (diverges) from the point in
question. For example, the vector function in Fig. 1.18a has a large (positive)
divergence (if the arrows pointed in, it would be a negative divergence), the func-
tion in Fig. 1.18b has zero divergence, and the function in Fig. 1.18c again has a
positive divergence. (Please understand that v here is a function—there’s a differ-
ent vector associated with every point in space. In the diagrams, of course, I can
only draw the arrows at a few representative locations.)

Imagine standing at the edge of a pond. Sprinkle some sawdust or pine needles
on the surface. If the material spreads out, then you dropped it at a point of positive
divergence; if it collects together, you dropped it at a point of negative divergence.
(The vector function v in this model is the velocity of the water at the surface—
this is a two-dimensional example, but it helps give one a “feel” for what the
divergence means. A point of positive divergence is a source, or “faucet”; a point
of negative divergence is a sink, or “drain.”)

(b)(a) (c)

FIGURE 1.18

6A vector function v(x, y, z) = vx (x, y, z) x̂ + vy(x, y, z) ŷ + vz(x, y, z) ẑ is really three functions—
one for each component. There’s no such thing as the divergence of a scalar.
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Example 1.4. Suppose the functions in Fig. 1.18 are va = r = x x̂ + y ŷ + z ẑ,
vb = ẑ, and vc = z ẑ. Calculate their divergences.

Solution

∇ · va = ∂

∂x
(x) + ∂

∂y
(y) + ∂

∂z
(z) = 1 + 1 + 1 = 3.

As anticipated, this function has a positive divergence.

∇ · vb = ∂

∂x
(0) + ∂

∂y
(0) + ∂

∂z
(1) = 0 + 0 + 0 = 0,

as expected.

∇ · vc = ∂

∂x
(0) + ∂

∂y
(0) + ∂

∂z
(z) = 0 + 0 + 1 = 1.

Problem 1.15 Calculate the divergence of the following vector functions:

(a) va = x2 x̂ + 3xz2 ŷ − 2xz ẑ.

(b) vb = xy x̂ + 2yz ŷ + 3zx ẑ.

(c) vc = y2 x̂ + (2xy + z2) ŷ + 2yz ẑ.

Problem 1.16 Sketch the vector function•

v = r̂
r 2

,

and compute its divergence. The answer may surprise you. . . can you explain it?

Problem 1.17 In two dimensions, show that the divergence transforms as a scalar!
under rotations. [Hint: Use Eq. 1.29 to determine vy and vz , and the method of
Prob. 1.14 to calculate the derivatives. Your aim is to show that ∂vy/∂ y + ∂vz/∂z =
∂vy/∂y + ∂vz/∂z.]

1.2.5 The Curl

From the definition of ∇ we construct the curl:

∇ × v =
∣∣∣∣∣∣

x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z
vx vy vz

∣∣∣∣∣∣
= x̂

(
∂vz

∂y
− ∂vy

∂z

)
+ ŷ

(
∂vx

∂z
− ∂vz

∂x

)
+ ẑ

(
∂vy

∂x
− ∂vx

∂y

)
. (1.41)
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FIGURE 1.19

Notice that the curl of a vector function7 v is, like any cross product, a vector.
Geometrical Interpretation: The name curl is also well chosen, for ∇ × v is

a measure of how much the vector v swirls around the point in question. Thus
the three functions in Fig. 1.18 all have zero curl (as you can easily check for
yourself), whereas the functions in Fig. 1.19 have a substantial curl, pointing in the
z direction, as the natural right-hand rule would suggest. Imagine (again) you are
standing at the edge of a pond. Float a small paddlewheel (a cork with toothpicks
pointing out radially would do); if it starts to rotate, then you placed it at a point
of nonzero curl. A whirlpool would be a region of large curl.

Example 1.5. Suppose the function sketched in Fig. 1.19a is va = −yx̂ + x ŷ,
and that in Fig. 1.19b is vb = x ŷ. Calculate their curls.

Solution

∇ × va =
∣∣∣∣∣∣

x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z
−y x 0

∣∣∣∣∣∣ = 2ẑ,

and

∇ × vb =
∣∣∣∣∣∣

x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z

0 x 0

∣∣∣∣∣∣ = ẑ.

As expected, these curls point in the +z direction. (Incidentally, they both have
zero divergence, as you might guess from the pictures: nothing is “spreading
out”. . . it just “swirls around.”)

7There’s no such thing as the curl of a scalar.
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Problem 1.18 Calculate the curls of the vector functions in Prob. 1.15.

Problem 1.19 Draw a circle in the xy plane. At a few representative points draw
the vector v tangent to the circle, pointing in the clockwise direction. By comparing
adjacent vectors, determine the sign of ∂vx/∂y and ∂vy/∂x . According to Eq. 1.41,
then, what is the direction of ∇ × v? Explain how this example illustrates the geo-
metrical interpretation of the curl.

Problem 1.20 Construct a vector function that has zero divergence and zero curl
everywhere. (A constant will do the job, of course, but make it something a little
more interesting than that!)

1.2.6 Product Rules

The calculation of ordinary derivatives is facilitated by a number of rules, such as
the sum rule:

d

dx
( f + g) = d f

dx
+ dg

dx
,

the rule for multiplying by a constant:

d

dx
(k f ) = k

d f

dx
,

the product rule:

d

dx
( f g) = f

dg

dx
+ g

d f

dx
,

and the quotient rule:

d

dx

(
f

g

)
=

g
d f

dx
− f

dg

dx
g2

.

Similar relations hold for the vector derivatives. Thus,

∇( f + g) = ∇ f + ∇g, ∇ · (A + B) = (∇ · A) + (∇ · B),

∇ × (A + B) = (∇ × A) + (∇ × B),

and

∇(k f ) = k∇ f, ∇ · (kA) = k(∇ · A), ∇ × (kA) = k(∇ × A),

as you can check for yourself. The product rules are not quite so simple. There
are two ways to construct a scalar as the product of two functions:

f g (product of two scalar functions),

A · B (dot product of two vector functions),
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and two ways to make a vector:

f A (scalar times vector),

A × B (cross product of two vectors).

Accordingly, there are six product rules, two for gradients:

(i) ∇( f g) = f ∇g + g∇ f,

(ii) ∇(A · B) = A × (∇ × B) + B × (∇ × A) + (A · ∇)B + (B · ∇)A,

two for divergences:

(iii) ∇ · ( f A) = f (∇ · A) + A · (∇ f ),

(iv) ∇ · (A × B) = B · (∇ × A) − A · (∇ × B),

and two for curls:

(v) ∇ × ( f A) = f (∇ × A) − A × (∇ f ),

(vi) ∇ × (A × B) = (B · ∇)A − (A · ∇)B + A(∇ · B) − B(∇ · A).

You will be using these product rules so frequently that I have put them inside the
front cover for easy reference. The proofs come straight from the product rule for
ordinary derivatives. For instance,

∇ · ( f A) = ∂

∂x
( f Ax ) + ∂

∂y
( f Ay) + ∂

∂z
( f Az)

=
(

∂ f

∂x
Ax + f

∂ Ax

∂x

)
+

(
∂ f

∂y
Ay + f

∂ Ay

∂y

)
+

(
∂ f

∂z
Az + f

∂ Az

∂z

)

= (∇ f ) · A + f (∇ · A).

It is also possible to formulate three quotient rules:

∇
(

f

g

)
= g∇ f − f ∇g

g2
,

∇ ·
(

A
g

)
= g(∇ · A) − A · (∇g)

g2
,

∇ ×
(

A
g

)
= g(∇ × A) + A × (∇g)

g2
.

However, since these can be obtained quickly from the corresponding product
rules, there is no point in listing them separately.
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Problem 1.21 Prove product rules (i), (iv), and (v).

Problem 1.22

(a) If A and B are two vector functions, what does the expression (A · ∇)B mean?
(That is, what are its x , y, and z components, in terms of the Cartesian compo-
nents of A, B, and ∇?)

(b) Compute (r̂ · ∇)r̂, where r̂ is the unit vector defined in Eq. 1.21.

(c) For the functions in Prob. 1.15, evaluate (va · ∇)vb.

Problem 1.23 (For masochists only.) Prove product rules (ii) and (vi). Refer to
Prob. 1.22 for the definition of (A · ∇)B.

Problem 1.24 Derive the three quotient rules.

Problem 1.25

(a) Check product rule (iv) (by calculating each term separately) for the functions

A = x x̂ + 2y ŷ + 3z ẑ; B = 3y x̂ − 2x ŷ.

(b) Do the same for product rule (ii).

(c) Do the same for rule (vi).

1.2.7 Second Derivatives

The gradient, the divergence, and the curl are the only first derivatives we can
make with ∇; by applying ∇ twice, we can construct five species of second deriva-
tives. The gradient ∇T is a vector, so we can take the divergence and curl of it:

(1) Divergence of gradient: ∇ · (∇T ).

(2) Curl of gradient: ∇ × (∇T ).

The divergence ∇ · v is a scalar—all we can do is take its gradient:

(3) Gradient of divergence: ∇(∇ · v).

The curl ∇ × v is a vector, so we can take its divergence and curl:

(4) Divergence of curl: ∇ · (∇ × v).

(5) Curl of curl: ∇ × (∇ × v).

This exhausts the possibilities, and in fact not all of them give anything new.
Let’s consider them one at a time:

(1) ∇ · (∇T ) =
(

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
·
(

∂T

∂x
x̂ + ∂T

∂y
ŷ + ∂T

∂z
ẑ
)

= ∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
. (1.42)
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This object, which we write as ∇2T for short, is called the Laplacian of T ; we
shall be studying it in great detail later on. Notice that the Laplacian of a scalar
T is a scalar. Occasionally, we shall speak of the Laplacian of a vector, ∇2v. By
this we mean a vector quantity whose x-component is the Laplacian of vx , and
so on:8

∇2v ≡ (∇2vx )x̂ + (∇2vy)ŷ + (∇2vz)ẑ. (1.43)

This is nothing more than a convenient extension of the meaning of ∇2.
(2) The curl of a gradient is always zero:

∇ × (∇T ) = 0. (1.44)

This is an important fact, which we shall use repeatedly; you can easily prove it
from the definition of ∇, Eq. 1.39. Beware: You might think Eq. 1.44 is “obvi-
ously” true—isn’t it just (∇ × ∇)T , and isn’t the cross product of any vector (in
this case, ∇) with itself always zero? This reasoning is suggestive, but not quite
conclusive, since ∇ is an operator and does not “multiply” in the usual way. The
proof of Eq. 1.44, in fact, hinges on the equality of cross derivatives:

∂

∂x

(
∂T

∂y

)
= ∂

∂y

(
∂T

∂x

)
. (1.45)

If you think I’m being fussy, test your intuition on this one:

(∇T ) × (∇S).

Is that always zero? (It would be, of course, if you replaced the ∇’s by an ordinary
vector.)

(3) ∇(∇ · v) seldom occurs in physical applications, and it has not been given
any special name of its own—it’s just the gradient of the divergence. Notice
that ∇(∇ · v) is not the same as the Laplacian of a vector: ∇2v = (∇ · ∇)v �=
∇(∇ · v).

(4) The divergence of a curl, like the curl of a gradient, is always zero:

∇ · (∇ × v) = 0. (1.46)

You can prove this for yourself. (Again, there is a fraudulent short-cut proof, using
the vector identity A · (B × C) = (A × B) · C.)

(5) As you can check from the definition of ∇:

∇ × (∇ × v) = ∇(∇ · v) − ∇2v. (1.47)

So curl-of-curl gives nothing new; the first term is just number (3), and the sec-
ond is the Laplacian (of a vector). (In fact, Eq. 1.47 is often used to define the

8In curvilinear coordinates, where the unit vectors themselves depend on position, they too must be
differentiated (see Sect. 1.4.1).
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Laplacian of a vector, in preference to Eq. 1.43, which makes explicit reference
to Cartesian coordinates.)

Really, then, there are just two kinds of second derivatives: the Laplacian
(which is of fundamental importance) and the gradient-of-divergence (which
we seldom encounter). We could go through a similar ritual to work out third
derivatives, but fortunately second derivatives suffice for practically all physical
applications.

A final word on vector differential calculus: It all flows from the operator ∇,
and from taking seriously its vectorial character. Even if you remembered only
the definition of ∇, you could easily reconstruct all the rest.

Problem 1.26 Calculate the Laplacian of the following functions:

(a) Ta = x2 + 2xy + 3z + 4.

(b) Tb = sin x sin y sin z.

(c) Tc = e−5x sin 4y cos 3z.

(d) v = x2 x̂ + 3xz2 ŷ − 2xz ẑ.

Problem 1.27 Prove that the divergence of a curl is always zero. Check it for func-
tion va in Prob. 1.15.

Problem 1.28 Prove that the curl of a gradient is always zero. Check it for function
(b) in Prob. 1.11.

1.3 INTEGRAL CALCULUS

1.3.1 Line, Surface, and Volume Integrals

In electrodynamics, we encounter several different kinds of integrals, among
which the most important are line (or path) integrals, surface integrals (or
flux), and volume integrals.

(a) Line Integrals. A line integral is an expression of the form∫ b

a
v · dl, (1.48)

where v is a vector function, dl is the infinitesimal displacement vector (Eq. 1.22),
and the integral is to be carried out along a prescribed path P from point a to point
b (Fig. 1.20). If the path in question forms a closed loop (that is, if b = a), I shall
put a circle on the integral sign: ∮

v · dl. (1.49)

At each point on the path, we take the dot product of v (evaluated at that point)
with the displacement dl to the next point on the path. To a physicist, the most
familiar example of a line integral is the work done by a force F: W = ∫

F · dl.
Ordinarily, the value of a line integral depends critically on the path taken from

a to b, but there is an important special class of vector functions for which the line
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FIGURE 1.21

integral is independent of path and is determined entirely by the end points. It will
be our business in due course to characterize this special class of vectors. (A force
that has this property is called conservative.)

Example 1.6. Calculate the line integral of the function v = y2 x̂ + 2x(y + 1) ŷ
from the point a = (1, 1, 0) to the point b = (2, 2, 0), along the paths (1) and (2)
in Fig. 1.21. What is

∮
v · dl for the loop that goes from a to b along (1) and

returns to a along (2)?

Solution
As always, dl = dx x̂ + dy ŷ + dz ẑ. Path (1) consists of two parts. Along the
“horizontal” segment, dy = dz = 0, so

(i) dl = dx x̂, y = 1, v · dl = y2 dx = dx, so
∫

v · dl = ∫ 2
1 dx = 1.

On the “vertical” stretch, dx = dz = 0, so

(ii) dl = dy ŷ, x = 2, v · dl = 2x(y + 1) dy = 4(y + 1) dy, so

∫
v · dl = 4

∫ 2

1
(y + 1) dy = 10.

By path (1), then,
∫ b

a
v · dl = 1 + 10 = 11.

Meanwhile, on path (2) x = y, dx = dy, and dz = 0, so
dl = dx x̂ + dx ŷ, v · dl = x2 dx + 2x(x + 1) dx = (3x2 + 2x) dx,

and ∫ b

a
v · dl =

∫ 2

1
(3x2 + 2x) dx = (x3 + x2)

∣∣2
1 = 10.

(The strategy here is to get everything in terms of one variable; I could just as well
have eliminated x in favor of y.)
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For the loop that goes out (1) and back (2), then,
∮

v · dl = 11 − 10 = 1.

(b) Surface Integrals. A surface integral is an expression of the form
∫

S
v · da, (1.50)

where v is again some vector function, and the integral is over a specified surface
S. Here da is an infinitesimal patch of area, with direction perpendicular to the
surface (Fig. 1.22). There are, of course, two directions perpendicular to any
surface, so the sign of a surface integral is intrinsically ambiguous. If the surface
is closed (forming a “balloon”), in which case I shall again put a circle on the
integral sign ∮

v · da,

then tradition dictates that “outward” is positive, but for open surfaces it’s arbi-
trary. If v describes the flow of a fluid (mass per unit area per unit time), then∫

v · da represents the total mass per unit time passing through the surface—
hence the alternative name, “flux.”

Ordinarily, the value of a surface integral depends on the particular surface
chosen, but there is a special class of vector functions for which it is independent
of the surface and is determined entirely by the boundary line. An important task
will be to characterize this special class of functions.

x

y

z
da

FIGURE 1.22
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Example 1.7. Calculate the surface integral of v = 2xz x̂ + (x+2) ŷ + y(z2−3)

ẑ over five sides (excluding the bottom) of the cubical box (side 2) in Fig. 1.23.
Let “upward and outward” be the positive direction, as indicated by the arrows.

Solution
Taking the sides one at a time:
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(i) x = 2, da = dy dz x̂, v · da = 2xz dy dz = 4z dy dz, so

∫
v · da = 4

∫ 2

0
dy

∫ 2

0
z dz = 16.

(ii) x = 0, da = −dy dz x̂, v · da = −2xz dy dz = 0, so∫
v · da = 0.

(iii) y = 2, da = dx dz ŷ, v · da = (x + 2) dx dz, so

∫
v · da =

∫ 2

0
(x + 2) dx

∫ 2

0
dz = 12.

(iv) y = 0, da = −dx dz ŷ, v · da = −(x + 2) dx dz, so

∫
v · da = −

∫ 2

0
(x + 2) dx

∫ 2

0
dz = −12.

(v) z = 2, da = dx dy ẑ, v · da = y(z2 − 3) dx dy = y dx dy, so

∫
v · da =

∫ 2

0
dx

∫ 2

0
y dy = 4.

The total flux is ∫
surface

v · da = 16 + 0 + 12 − 12 + 4 = 20.

(c) Volume Integrals. A volume integral is an expression of the form
∫

V
T dτ, (1.51)

where T is a scalar function and dτ is an infinitesimal volume element. In Carte-
sian coordinates,

dτ = dx dy dz. (1.52)

For example, if T is the density of a substance (which might vary from point to
point), then the volume integral would give the total mass. Occasionally we shall
encounter volume integrals of vector functions:

∫
v dτ =

∫
(vx x̂ + vy ŷ + vz ẑ)dτ = x̂

∫
vx dτ + ŷ

∫
vydτ + ẑ

∫
vzdτ ;

(1.53)

because the unit vectors (x̂, ŷ, and ẑ) are constants, they come outside the integral.
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Example 1.8. Calculate the volume integral of T = xyz2 over the prism in
Fig. 1.24.

Solution
You can do the three integrals in any order. Let’s do x first: it runs from 0 to
(1 − y), then y (it goes from 0 to 1), and finally z (0 to 3):

∫
T dτ =

∫ 3

0
z2

{∫ 1

0
y

[∫ 1−y

0
x dx

]
dy

}
dz

= 1

2

∫ 3

0
z2 dz

∫ 1

0
(1 − y)2 y dy = 1

2
(9)

(
1

12

)
= 3

8
.

x

y

z

1
1

3

FIGURE 1.24

Problem 1.29 Calculate the line integral of the function v = x2 x̂ + 2yz ŷ + y2 ẑ
from the origin to the point (1,1,1) by three different routes:

(a) (0, 0, 0) → (1, 0, 0) → (1, 1, 0) → (1, 1, 1).

(b) (0, 0, 0) → (0, 0, 1) → (0, 1, 1) → (1, 1, 1).

(c) The direct straight line.

(d) What is the line integral around the closed loop that goes out along path (a) and
back along path (b)?

Problem 1.30 Calculate the surface integral of the function in Ex. 1.7, over the bot-
tom of the box. For consistency, let “upward” be the positive direction. Does the
surface integral depend only on the boundary line for this function? What is the
total flux over the closed surface of the box (including the bottom)? [Note: For the
closed surface, the positive direction is “outward,” and hence “down,” for the bottom
face.]

Problem 1.31 Calculate the volume integral of the function T = z2 over the tetra-
hedron with corners at (0,0,0), (1,0,0), (0,1,0), and (0,0,1).
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1.3.2 The Fundamental Theorem of Calculus

Suppose f (x) is a function of one variable. The fundamental theorem of calcu-
lus says:

∫ b

a

(
d f

dx

)
dx = f (b) − f (a). (1.54)

In case this doesn’t look familiar, I’ll write it another way:
∫ b

a
F(x) dx = f (b) − f (a),

where d f/dx = F(x). The fundamental theorem tells you how to integrate F(x):
you think up a function f (x) whose derivative is equal to F .

Geometrical Interpretation: According to Eq. 1.33, d f = (d f/dx)dx is the
infinitesimal change in f when you go from (x) to (x + dx). The fundamental
theorem (Eq. 1.54) says that if you chop the interval from a to b (Fig. 1.25) into
many tiny pieces, dx , and add up the increments d f from each little piece, the
result is (not surprisingly) equal to the total change in f : f (b) − f (a). In other
words, there are two ways to determine the total change in the function: either
subtract the values at the ends or go step-by-step, adding up all the tiny increments
as you go. You’ll get the same answer either way.

Notice the basic format of the fundamental theorem: the integral of a derivative
over some region is given by the value of the function at the end points (bound-
aries). In vector calculus there are three species of derivative (gradient, diver-
gence, and curl), and each has its own “fundamental theorem,” with essentially
the same format. I don’t plan to prove these theorems here; rather, I will explain
what they mean, and try to make them plausible. Proofs are given in Appendix A.

1.3.3 The Fundamental Theorem for Gradients

Suppose we have a scalar function of three variables T (x, y, z). Starting at point
a, we move a small distance dl1 (Fig. 1.26). According to Eq. 1.37, the function
T will change by an amount

dT = (∇T ) · dl1.

xbdxa

f (x)

f (b)

f (a)

FIGURE 1.25

d l1

y

z

x

a

b

FIGURE 1.26
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Now we move a little further, by an additional small displacement dl2; the incre-
mental change in T will be (∇T ) · dl2. In this manner, proceeding by infinitesimal
steps, we make the journey to point b. At each step we compute the gradient of T
(at that point) and dot it into the displacement dl. . . this gives us the change in T .
Evidently the total change in T in going from a to b (along the path selected) is

∫ b

a
(∇T ) · dl = T (b) − T (a). (1.55)

This is the fundamental theorem for gradients; like the “ordinary” fundamental
theorem, it says that the integral (here a line integral) of a derivative (here the
gradient) is given by the value of the function at the boundaries (a and b).

Geometrical Interpretation: Suppose you wanted to determine the height of
the Eiffel Tower. You could climb the stairs, using a ruler to measure the rise at
each step, and adding them all up (that’s the left side of Eq. 1.55), or you could
place altimeters at the top and the bottom, and subtract the two readings (that’s
the right side); you should get the same answer either way (that’s the fundamental
theorem).

Incidentally, as we found in Ex. 1.6, line integrals ordinarily depend on the
path taken from a to b. But the right side of Eq. 1.55 makes no reference to the
path—only to the end points. Evidently, gradients have the special property that
their line integrals are path independent:

Corollary 1:
∫ b

a (∇T ) · dl is independent of the path taken from a to b.

Corollary 2:
∮
(∇T ) · dl = 0, since the beginning and end points

are identical, and hence T (b) − T (a) = 0.

Example 1.9. Let T = xy2, and take point a to be the origin (0, 0, 0) and b the
point (2, 1, 0). Check the fundamental theorem for gradients.

Solution
Although the integral is independent of path, we must pick a specific path
in order to evaluate it. Let’s go out along the x axis (step i) and then up
(step ii) (Fig. 1.27). As always, dl = dx x̂ + dy ŷ + dz ẑ; ∇T = y2 x̂ + 2xy ŷ.

(i) y = 0; dl = dx x̂, ∇T · dl = y2 dx = 0, so
∫

i
∇T · dl = 0.

(ii) x = 2; dl = dy ŷ, ∇T · dl = 2xy dy = 4y dy, so

∫
ii
∇T · dl =

∫ 1

0
4y dy = 2y2

∣∣∣1

0
= 2.
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The total line integral is 2. Is this consistent with the fundamental theorem? Yes:
T (b) − T (a) = 2 − 0 = 2.

Now, just to convince you that the answer is independent of path, let me calcu-
late the same integral along path iii (the straight line from a to b):

(iii) y = 1
2 x, dy = 1

2 dx, ∇T · dl = y2 dx + 2xy dy = 3
4 x2 dx , so

∫
iii

∇T · dl =
∫ 2

0

3
4 x2 dx = 1

4 x3
∣∣∣2

0
= 2.

Problem 1.32 Check the fundamental theorem for gradients, using T = x2 +
4xy + 2yz3, the points a = (0, 0, 0), b = (1, 1, 1), and the three paths in Fig. 1.28:

(a) (0, 0, 0) → (1, 0, 0) → (1, 1, 0) → (1, 1, 1);

(b) (0, 0, 0) → (0, 0, 1) → (0, 1, 1) → (1, 1, 1);

(c) the parabolic path z = x2; y = x .

y

z

(a)x

y

z

(b)x

y

z

(c)x

FIGURE 1.28

1.3.4 The Fundamental Theorem for Divergences

The fundamental theorem for divergences states that:

∫
V

(∇ · v) dτ =
∮
S

v · da. (1.56)
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In honor, I suppose, of its great importance, this theorem has at least three special
names: Gauss’s theorem, Green’s theorem, or simply the divergence theorem.
Like the other “fundamental theorems,” it says that the integral of a derivative (in
this case the divergence) over a region (in this case a volume, V) is equal to the
value of the function at the boundary (in this case the surface S that bounds the
volume). Notice that the boundary term is itself an integral (specifically, a surface
integral). This is reasonable: the “boundary” of a line is just two end points, but
the boundary of a volume is a (closed) surface.

Geometrical Interpretation: If v represents the flow of an incompressible fluid,
then the flux of v (the right side of Eq. 1.56) is the total amount of fluid passing out
through the surface, per unit time. Now, the divergence measures the “spreading
out” of the vectors from a point—a place of high divergence is like a “faucet,”
pouring out liquid. If we have a bunch of faucets in a region filled with incom-
pressible fluid, an equal amount of liquid will be forced out through the bound-
aries of the region. In fact, there are two ways we could determine how much is
being produced: (a) we could count up all the faucets, recording how much each
puts out, or (b) we could go around the boundary, measuring the flow at each
point, and add it all up. You get the same answer either way:∫

(faucets within the volume) =
∮

(flow out through the surface).

This, in essence, is what the divergence theorem says.

Example 1.10. Check the divergence theorem using the function

v = y2 x̂ + (2xy + z2) ŷ + (2yz) ẑ

and a unit cube at the origin (Fig. 1.29).

Solution
In this case

∇ · v = 2(x + y),

and ∫
V

2(x + y) dτ = 2
∫ 1

0

∫ 1

0

∫ 1

0
(x + y) dx dy dz,

∫ 1

0
(x + y) dx = 1

2 + y,

∫ 1

0
( 1

2 + y) dy = 1,

∫ 1

0
1 dz = 1.

Thus, ∫
V

∇ · v dτ = 2.
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So much for the left side of the divergence theorem. To evaluate the surface
integral we must consider separately the six faces of the cube:

(i)
∫

v · da =
∫ 1

0

∫ 1

0
y2dy dz = 1

3 .

(ii)
∫

v · da = −
∫ 1

0

∫ 1

0
y2 dy dz = − 1

3 .

(iii)
∫

v · da =
∫ 1

0

∫ 1

0
(2x + z2) dx dz = 4

3 .

(iv)

∫
v · da = −

∫ 1

0

∫ 1

0
z2 dx dz = − 1

3 .

(v)

∫
v · da =

∫ 1

0

∫ 1

0
2y dx dy = 1.

(vi)
∫

v · da = −
∫ 1

0

∫ 1

0
0 dx dy = 0.

So the total flux is: ∮
S

v · da = 1
3 − 1

3 + 4
3 − 1

3 + 1 + 0 = 2,

as expected.

Problem 1.33 Test the divergence theorem for the function v = (xy) x̂ + (2yz) ŷ +
(3zx) ẑ. Take as your volume the cube shown in Fig. 1.30, with sides of length 2.
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1.3.5 The Fundamental Theorem for Curls

The fundamental theorem for curls, which goes by the special name of Stokes’
theorem, states that

∫
S

(∇ × v) · da =
∮
P

v · dl. (1.57)

As always, the integral of a derivative (here, the curl) over a region (here, a patch
of surface, S) is equal to the value of the function at the boundary (here, the
perimeter of the patch, P). As in the case of the divergence theorem, the boundary
term is itself an integral—specifically, a closed line integral.

Geometrical Interpretation: Recall that the curl measures the “twist” of the
vectors v; a region of high curl is a whirlpool—if you put a tiny paddle wheel
there, it will rotate. Now, the integral of the curl over some surface (or, more
precisely, the flux of the curl through that surface) represents the “total amount
of swirl,” and we can determine that just as well by going around the edge and
finding how much the flow is following the boundary (Fig. 1.31). Indeed,

∮
v · dl

is sometimes called the circulation of v.
You may have noticed an apparent ambiguity in Stokes’ theorem: concerning

the boundary line integral, which way are we supposed to go around (clockwise
or counterclockwise)? If we go the “wrong” way, we’ll pick up an overall sign
error. The answer is that it doesn’t matter which way you go as long as you are
consistent, for there is a compensating sign ambiguity in the surface integral:
Which way does da point? For a closed surface (as in the divergence theorem),
da points in the direction of the outward normal; but for an open surface, which
way is “out”? Consistency in Stokes’ theorem (as in all such matters) is given by
the right-hand rule: if your fingers point in the direction of the line integral, then
your thumb fixes the direction of da (Fig. 1.32).

Now, there are plenty of surfaces (infinitely many) that share any given bound-
ary line. Twist a paper clip into a loop, and dip it in soapy water. The soap film
constitutes a surface, with the wire loop as its boundary. If you blow on it, the soap
film will expand, making a larger surface, with the same boundary. Ordinarily, a
flux integral depends critically on what surface you integrate over, but evidently
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this is not the case with curls. For Stokes’ theorem says that
∫
(∇ × v) · da is equal

to the line integral of v around the boundary, and the latter makes no reference to
the specific surface you choose.

Corollary 1:
∫
(∇ × v) · da depends only on the boundary line, not

on the particular surface used.

Corollary 2:
∮
(∇ × v) · da = 0 for any closed surface, since the

boundary line, like the mouth of a balloon, shrinks
down to a point, and hence the right side of Eq. 1.57
vanishes.

These corollaries are analogous to those for the gradient theorem. We will develop
the parallel further in due course.

Example 1.11. Suppose v = (2xz + 3y2)ŷ + (4yz2)ẑ. Check Stokes’ theorem
for the square surface shown in Fig. 1.33.

Solution
Here

∇ × v = (4z2 − 2x) x̂ + 2z ẑ and da = dy dz x̂.

x
y

z

1

1

(iv) (ii)

(iii)

(i)

FIGURE 1.33

(In saying that da points in the x direction, we are committing ourselves to a
counterclockwise line integral. We could as well write da = −dy dz x̂, but then
we would be obliged to go clockwise.) Since x = 0 for this surface,

∫
(∇ × v) · da =

∫ 1

0

∫ 1

0
4z2 dy dz = 4

3
.
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Now, what about the line integral? We must break this up into four segments:

(i) x = 0, z = 0, v · dl = 3y2 dy,
∫

v · dl = ∫ 1
0 3y2 dy = 1,

(ii) x = 0, y = 1, v · dl = 4z2 dz,
∫

v · dl = ∫ 1
0 4z2 dz = 4

3
,

(iii) x = 0, z = 1, v · dl = 3y2 dy,
∫

v · dl = ∫ 0
1 3y2 dy = −1,

(iv) x = 0, y = 0, v · dl = 0,
∫

v · dl = ∫ 0
1 0 dz = 0.

So ∮
v · dl = 1 + 4

3
− 1 + 0 = 4

3
.

It checks.
A point of strategy: notice how I handled step (iii). There is a temptation to

write dl = −dy ŷ here, since the path goes to the left. You can get away with this,
if you absolutely insist, by running the integral from 0 → 1. But it is much safer
to say dl = dx x̂ + dy ŷ + dz ẑ always (never any minus signs) and let the limits
of the integral take care of the direction.

Problem 1.34 Test Stokes’ theorem for the function v = (xy) x̂ + (2yz) ŷ +
(3zx) ẑ, using the triangular shaded area of Fig. 1.34.

Problem 1.35 Check Corollary 1 by using the same function and boundary line as
in Ex. 1.11, but integrating over the five faces of the cube in Fig. 1.35. The back of
the cube is open.
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2
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1.3.6 Integration by Parts

The technique known (awkwardly) as integration by parts exploits the product
rule for derivatives:

d

dx
( f g) = f

(
dg

dx

)
+ g

(
d f

dx

)
.
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Integrating both sides, and invoking the fundamental theorem:

∫ b

a

d

dx
( f g) dx = f g

∣∣∣b

a
=

∫ b

a
f

(
dg

dx

)
dx +

∫ b

a
g

(
d f

dx

)
dx,

or
∫ b

a
f

(
dg

dx

)
dx = −

∫ b

a
g

(
d f

dx

)
dx + f g

∣∣∣b

a
. (1.58)

That’s integration by parts. It applies to the situation in which you are called upon
to integrate the product of one function ( f ) and the derivative of another (g); it
says you can transfer the derivative from g to f , at the cost of a minus sign and a
boundary term.

Example 1.12. Evaluate the integral
∫ ∞

0
xe−x dx .

Solution
The exponential can be expressed as a derivative:

e−x = d

dx

(−e−x
) ;

in this case, then, f (x) = x , g(x) = −e−x , and d f/dx = 1, so
∫ ∞

0
xe−x dx =

∫ ∞

0
e−x dx − xe−x

∣∣∣∞
0

= −e−x
∣∣∣∞
0

= 1.

We can exploit the product rules of vector calculus, together with the appro-
priate fundamental theorems, in exactly the same way. For example, integrating

∇ · ( f A) = f (∇ · A) + A · (∇ f )

over a volume, and invoking the divergence theorem, yields
∫

∇ · ( f A) dτ =
∫

f (∇ · A) dτ +
∫

A · (∇ f ) dτ =
∮

f A · da,

or ∫
V

f (∇ · A) dτ = −
∫

V
A · (∇ f ) dτ +

∮
S

f A · da. (1.59)

Here again the integrand is the product of one function ( f ) and the derivative (in
this case the divergence) of another (A), and integration by parts licenses us to
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transfer the derivative from A to f (where it becomes a gradient), at the cost of a
minus sign and a boundary term (in this case a surface integral).

You might wonder how often one is likely to encounter an integral involving
the product of one function and the derivative of another; the answer is surpris-
ingly often, and integration by parts turns out to be one of the most powerful tools
in vector calculus.

Problem 1.36

(a) Show that∫
S

f (∇ × A) · da =
∫
S
[A × (∇ f )] · da +

∮
P

f A · dl. (1.60)

(b) Show that∫
V

B · (∇ × A) dτ =
∫
V

A · (∇ × B) dτ +
∮
S
(A × B) · da. (1.61)

1.4 CURVILINEAR COORDINATES

1.4.1 Spherical Coordinates

You can label a point P by its Cartesian coordinates (x, y, z), but sometimes it
is more convenient to use spherical coordinates (r, θ, φ); r is the distance from
the origin (the magnitude of the position vector r), θ (the angle down from the
z axis) is called the polar angle, and φ (the angle around from the x axis) is the
azimuthal angle. Their relation to Cartesian coordinates can be read from
Fig. 1.36:

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ. (1.62)

Figure 1.36 also shows three unit vectors, r̂, θ̂ , φ̂, pointing in the direction of
increase of the corresponding coordinates. They constitute an orthogonal (mutu-
ally perpendicular) basis set (just like x̂, ŷ, ẑ), and any vector A can be expressed
in terms of them, in the usual way:

A = Ar r̂ + Aθ θ̂ + Aφ φ̂; (1.63)

Ar , Aθ , and Aφ are the radial, polar, and azimuthal components of A. In terms of
the Cartesian unit vectors,

r̂ = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ,
θ̂ = cos θ cos φ x̂ + cos θ sin φ ŷ − sin θ ẑ,
φ̂ = − sin φ x̂ + cos φ ŷ,

⎫⎬
⎭ (1.64)

as you can check for yourself (Prob. 1.38). I have put these formulas inside the
back cover, for easy reference.
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But there is a poisonous snake lurking here that I’d better warn you about:
r̂, θ̂ , and φ̂ are associated with a particular point P , and they change direction
as P moves around. For example, r̂ always points radially outward, but “radially
outward” can be the x direction, the y direction, or any other direction, depend-
ing on where you are. In Fig. 1.37, A = ŷ and B = −ŷ, and yet both of them
would be written as r̂ in spherical coordinates. One could take account of this
by explicitly indicating the point of reference: r̂(θ, φ), θ̂(θ, φ), φ̂(θ, φ), but this
would be cumbersome, and as long as you are alert to the problem, I don’t think it
will cause difficulties.9 In particular, do not naïvely combine the spherical compo-
nents of vectors associated with different points (in Fig. 1.37, A + B = 0, not 2r̂,
and A · B = −1, not +1). Beware of differentiating a vector that is expressed in
spherical coordinates, since the unit vectors themselves are functions of position
(∂ r̂/∂θ = θ̂ , for example). And do not take r̂, θ̂ , and φ̂ outside an integral, as I
did with x̂, ŷ, and ẑ in Eq. 1.53. In general, if you’re uncertain about the validity
of an operation, rewrite the problem using Cartesian coordinates, for which this
difficulty does not arise.

An infinitesimal displacement in the r̂ direction is simply dr (Fig. 1.38a), just
as an infinitesimal element of length in the x direction is dx :

dlr = dr. (1.65)

x

y

z

AB
1−1

FIGURE 1.37

9I claimed back at the beginning that vectors have no location, and I’ll stand by that. The vectors
themselves live “out there,” completely independent of our choice of coordinates. But the notation we
use to represent them does depend on the point in question, in curvilinear coordinates.
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On the other hand, an infinitesimal element of length in the θ̂ direction (Fig. 1.38b)
is not just dθ (that’s an angle—it doesn’t even have the right units for a length);
rather,

dlθ = r dθ. (1.66)

Similarly, an infinitesimal element of length in the φ̂ direction (Fig. 1.38c) is

dlφ = r sin θ dφ. (1.67)

Thus the general infinitesimal displacement dl is

dl = dr r̂ + r dθ θ̂ + r sin θ dφ φ̂. (1.68)

This plays the role (in line integrals, for example) that dl = dx x̂ + dy ŷ + dz ẑ
played in Cartesian coordinates.

The infinitesimal volume element dτ , in spherical coordinates, is the product
of the three infinitesimal displacements:

dτ = dlr dlθ dlφ = r2 sin θ dr dθ dφ. (1.69)

I cannot give you a general expression for surface elements da, since these depend
on the orientation of the surface. You simply have to analyze the geometry for any
given case (this goes for Cartesian and curvilinear coordinates alike). If you are
integrating over the surface of a sphere, for instance, then r is constant, whereas
θ and φ change (Fig. 1.39), so

da1 = dlθ dlφ r̂ = r2 sin θ dθ dφ r̂.

On the other hand, if the surface lies in the xy plane, say, so that θ is constant (to
wit: π/2) while r and φ vary, then

da2 = dlr dlφ θ̂ = r dr dφ θ̂ .

Notice, finally, that r ranges from 0 to ∞, φ from 0 to 2π , and θ from 0 to π

(not 2π—that would count every point twice).10

10Alternatively, you could run φ from 0 to π (the “eastern hemisphere”) and cover the “western hemi-
sphere” by extending θ from π up to 2π . But this is very bad notation, since, among other things,
sin θ will then run negative, and you’ll have to put absolute value signs around that term in volume
and surface elements (area and volume being intrinsically positive quantities).
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Example 1.13. Find the volume of a sphere of radius R.

Solution

V =
∫

dτ =
∫ R

r=0

∫ π

θ=0

∫ 2π

φ=0
r2 sin θ dr dθ dφ

=
(∫ R

0
r2 dr

)(∫ π

0
sin θ dθ

) (∫ 2π

0
dφ

)

=
(

R3

3

)
(2)(2π) = 4

3
π R3

(not a big surprise).

So far we have talked only about the geometry of spherical coordinates. Now
I would like to “translate” the vector derivatives (gradient, divergence, curl, and
Laplacian) into r , θ , φ notation. In principle, this is entirely straightforward: in
the case of the gradient,

∇T = ∂T

∂x
x̂ + ∂T

∂y
ŷ + ∂T

∂z
ẑ,

for instance, we would first use the chain rule to expand the partials:

∂T

∂x
= ∂T

∂r

(
∂r

∂x

)
+ ∂T

∂θ

(
∂θ

∂x

)
+ ∂T

∂φ

(
∂φ

∂x

)
.

The terms in parentheses could be worked out from Eq. 1.62—or rather, the in-
verse of those equations (Prob. 1.37). Then we’d do the same for ∂T/∂y and
∂T/∂z. Finally, we’d substitute in the formulas for x̂, ŷ, and ẑ in terms of r̂, θ̂ ,
and φ̂ (Prob. 1.38). It would take an hour to figure out the gradient in spherical
coordinates by this brute-force method. I suppose this is how it was first done, but
there is a much more efficient indirect approach, explained in Appendix A, which
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has the extra advantage of treating all coordinate systems at once. I described the
“straightforward” method only to show you that there is nothing subtle or mys-
terious about transforming to spherical coordinates: you’re expressing the same
quantity (gradient, divergence, or whatever) in different notation, that’s all.

Here, then, are the vector derivatives in spherical coordinates:

Gradient:

∇T = ∂T

∂r
r̂ + 1

r

∂T

∂θ
θ̂ + 1

r sin θ

∂T

∂φ
φ̂. (1.70)

Divergence:

∇ · v = 1

r2

∂

∂r
(r2vr ) + 1

r sin θ

∂

∂θ
(sin θvθ ) + 1

r sin θ

∂vφ

∂φ
. (1.71)

Curl:

∇ × v = 1

r sin θ

[
∂

∂θ
(sin θvφ) − ∂vθ

∂φ

]
r̂ + 1

r

[
1

sin θ

∂vr

∂φ
− ∂

∂r
(rvφ)

]
θ̂

+ 1

r

[
∂

∂r
(rvθ ) − ∂vr

∂θ

]
φ̂. (1.72)

Laplacian:

∇2T = 1

r2

∂

∂r

(
r2 ∂T

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
+ 1

r2 sin2 θ

∂2T

∂φ2
. (1.73)

For reference, these formulas are listed inside the front cover.

Problem 1.37 Find formulas for r, θ, φ in terms of x, y, z (the inverse, in other
words, of Eq. 1.62).

Problem 1.38 Express the unit vectors r̂, θ̂ , φ̂ in terms of x̂, ŷ, ẑ (that is, derive•
Eq. 1.64). Check your answers several ways (r̂ · r̂ ?= 1, θ̂ · φ̂

?= 0, r̂ × θ̂
?= φ̂, . . .).

Also work out the inverse formulas, giving x̂, ŷ, ẑ in terms of r̂, θ̂ , φ̂ (and θ, φ).

Problem 1.39•
(a) Check the divergence theorem for the function v1 = r 2r̂, using as your volume

the sphere of radius R, centered at the origin.

(b) Do the same for v2 = (1/r 2)r̂. (If the answer surprises you, look back at
Prob. 1.16.)

Problem 1.40 Compute the divergence of the function

v = (r cos θ) r̂ + (r sin θ) θ̂ + (r sin θ cos φ) φ̂.

Check the divergence theorem for this function, using as your volume the inverted
hemispherical bowl of radius R, resting on the xy plane and centered at the origin
(Fig. 1.40).
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Problem 1.41 Compute the gradient and Laplacian of the function T = r(cos θ +
sin θ cos φ). Check the Laplacian by converting T to Cartesian coordinates and
using Eq. 1.42. Test the gradient theorem for this function, using the path shown
in Fig. 1.41, from (0, 0, 0) to (0, 0, 2).

1.4.2 Cylindrical Coordinates

The cylindrical coordinates (s, φ, z) of a point P are defined in Fig. 1.42. Notice
that φ has the same meaning as in spherical coordinates, and z is the same as
Cartesian; s is the distance to P from the z axis, whereas the spherical coordinate
r is the distance from the origin. The relation to Cartesian coordinates is

x = s cos φ, y = s sin φ, z = z. (1.74)

The unit vectors (Prob. 1.42) are

ŝ = cos φ x̂ + sin φ ŷ,

φ̂ = − sin φ x̂ + cos φ ŷ,

ẑ = ẑ.

⎫⎬
⎭ (1.75)

The infinitesimal displacements are

dls = ds, dlφ = s dφ, dlz = dz, (1.76)
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so

dl = ds ŝ + s dφ φ̂ + dz ẑ, (1.77)

and the volume element is

dτ = s ds dφ dz. (1.78)

The range of s is 0 → ∞, φ goes from 0 → 2π , and z from −∞ to ∞.
The vector derivatives in cylindrical coordinates are:

Gradient:

∇T = ∂T

∂s
ŝ + 1

s

∂T

∂φ
φ̂ + ∂T

∂z
ẑ. (1.79)

Divergence:

∇ · v = 1

s

∂

∂s
(svs) + 1

s

∂vφ

∂φ
+ ∂vz

∂z
. (1.80)

Curl:

∇ × v =
(

1

s

∂vz

∂φ
− ∂vφ

∂z

)
ŝ +

(
∂vs

∂z
− ∂vz

∂s

)
φ̂ + 1

s

[
∂

∂s
(svφ) − ∂vs

∂φ

]
ẑ.

(1.81)

Laplacian:

∇2T = 1

s

∂

∂s

(
s
∂T

∂s

)
+ 1

s2

∂2T

∂φ2
+ ∂2T

∂z2
. (1.82)

These formulas are also listed inside the front cover.

Problem 1.42 Express the cylindrical unit vectors ŝ, φ̂, ẑ in terms of x̂, ŷ, ẑ (that is,
derive Eq. 1.75). “Invert” your formulas to get x̂, ŷ, ẑ in terms of ŝ, φ̂, ẑ (and φ).
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Problem 1.43

(a) Find the divergence of the function

v = s(2 + sin2 φ) ŝ + s sin φ cos φ φ̂ + 3z ẑ.

(b) Test the divergence theorem for this function, using the quarter-cylinder
(radius 2, height 5) shown in Fig. 1.43.

(c) Find the curl of v.

1.5 THE DIRAC DELTA FUNCTION

1.5.1 The Divergence of r̂/r2

Consider the vector function

v = 1

r2
r̂. (1.83)

At every location, v is directed radially outward (Fig. 1.44); if ever there was a
function that ought to have a large positive divergence, this is it. And yet, when
you actually calculate the divergence (using Eq. 1.71), you get precisely zero:

∇ · v = 1

r2

∂

∂r

(
r2 1

r2

)
= 1

r2

∂

∂r
(1) = 0. (1.84)

(You will have encountered this paradox already, if you worked Prob. 1.16.) The
plot thickens when we apply the divergence theorem to this function. Suppose
we integrate over a sphere of radius R, centered at the origin (Prob. 1.38b); the
surface integral is

∮
v · da =

∫ (
1

R2
r̂
)

· (R2 sin θ dθ dφ r̂)

=
(∫ π

0
sin θ dθ

) (∫ 2π

0
dφ

)
= 4π. (1.85)

FIGURE 1.44
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But the volume integral,
∫ ∇ · v dτ , is zero, if we are really to believe Eq. 1.84.

Does this mean that the divergence theorem is false? What’s going on here?
The source of the problem is the point r = 0, where v blows up (and where,

in Eq. 1.84, we have unwittingly divided by zero). It is quite true that ∇ · v = 0
everywhere except the origin, but right at the origin the situation is more com-
plicated. Notice that the surface integral (Eq. 1.85) is independent of R; if the
divergence theorem is right (and it is), we should get

∫
(∇ · v) dτ = 4π for any

sphere centered at the origin, no matter how small. Evidently the entire contribu-
tion must be coming from the point r = 0! Thus, ∇ · v has the bizarre property
that it vanishes everywhere except at one point, and yet its integral (over any
volume containing that point) is 4π . No ordinary function behaves like that. (On
the other hand, a physical example does come to mind: the density (mass per unit
volume) of a point particle. It’s zero except at the exact location of the particle, and
yet its integral is finite—namely, the mass of the particle.) What we have stum-
bled on is a mathematical object known to physicists as the Dirac delta function.
It arises in many branches of theoretical physics. Moreover, the specific problem
at hand (the divergence of the function r̂/r2) is not just some arcane curiosity—it
is, in fact, central to the whole theory of electrodynamics. So it is worthwhile to
pause here and study the Dirac delta function with some care.

1.5.2 The One-Dimensional Dirac Delta Function

The one-dimensional Dirac delta function, δ(x), can be pictured as an infinitely
high, infinitesimally narrow “spike,” with area 1 (Fig. 1.45). That is to say:

δ(x) =
{

0, if x �= 0
∞, if x = 0

}
(1.86)

and11

∫ ∞

−∞
δ(x) dx = 1. (1.87)

x

δ(x)

Area 1

a

FIGURE 1.45

11Notice that the dimensions of δ(x) are one over the dimensions of its argument; if x is a length, δ(x)

carries the units m−1.
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Technically, δ(x) is not a function at all, since its value is not finite at x = 0; in the
mathematical literature it is known as a generalized function, or distribution. It
is, if you like, the limit of a sequence of functions, such as rectangles Rn(x), of
height n and width 1/n, or isosceles triangles Tn(x), of height n and base 2/n
(Fig. 1.46).

If f (x) is some “ordinary” function (that is, not another delta function—in
fact, just to be on the safe side, let’s say that f (x) is continuous), then the product
f (x)δ(x) is zero everywhere except at x = 0. It follows that

f (x)δ(x) = f (0)δ(x). (1.88)

(This is the most important fact about the delta function, so make sure you under-
stand why it is true: since the product is zero anyway except at x = 0, we may as
well replace f (x) by the value it assumes at the origin.) In particular

∫ ∞

−∞
f (x)δ(x) dx = f (0)

∫ ∞

−∞
δ(x) dx = f (0). (1.89)

Under an integral, then, the delta function “picks out” the value of f (x) at x = 0.
(Here and below, the integral need not run from −∞ to +∞; it is sufficient that
the domain extend across the delta function, and −ε to +ε would do as well.)

Of course, we can shift the spike from x = 0 to some other point, x = a
(Fig. 1.47):

xa

δ(x − a)

Area 1

FIGURE 1.47
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δ(x − a) =
{

0, if x �= a
∞, if x = a

}
with

∫ ∞

−∞
δ(x − a) dx = 1. (1.90)

Equation 1.88 becomes

f (x)δ(x − a) = f (a)δ(x − a), (1.91)

and Eq. 1.89 generalizes to

∫ ∞

−∞
f (x)δ(x − a) dx = f (a). (1.92)

Example 1.14. Evaluate the integral

∫ 3

0
x3δ(x − 2) dx .

Solution
The delta function picks out the value of x3 at the point x = 2, so the integral
is 23 = 8. Notice, however, that if the upper limit had been 1 (instead of 3), the
answer would be 0, because the spike would then be outside the domain of inte-
gration.

Although δ itself is not a legitimate function, integrals over δ are perfectly
acceptable. In fact, it’s best to think of the delta function as something that is
always intended for use under an integral sign. In particular, two expressions
involving delta functions (say, D1(x) and D2(x)) are considered equal if 12

∫ ∞

−∞
f (x)D1(x) dx =

∫ ∞

−∞
f (x)D2(x) dx, (1.93)

for all (“ordinary”) functions f (x).

Example 1.15. Show that

δ(kx) = 1

|k|δ(x), (1.94)

where k is any (nonzero) constant. (In particular, δ(−x) = δ(x).)

12I emphasize that the integrals must be equal for any f (x). Suppose D1(x) and D2(x) actually
differed, say, in the neighborhood of the point x = 17. Then we could pick a function f (x) that was
sharply peaked about x = 17, and the integrals would not be equal.
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Solution
For an arbitrary test function f (x), consider the integral∫ ∞

−∞
f (x)δ(kx) dx .

Changing variables, we let y ≡ kx , so that x = y/k, and dx = 1/k dy. If k is
positive, the integration still runs from −∞ to +∞, but if k is negative, then
x = ∞ implies y = −∞, and vice versa, so the order of the limits is reversed.
Restoring the “proper” order costs a minus sign. Thus∫ ∞

−∞
f (x)δ(kx) dx = ±

∫ ∞

−∞
f (y/k)δ(y)

dy

k
= ±1

k
f (0) = 1

|k| f (0).

(The lower signs apply when k is negative, and we account for this neatly by
putting absolute value bars around the final k, as indicated.) Under the integral
sign, then, δ(kx) serves the same purpose as (1/|k|)δ(x):∫ ∞

−∞
f (x)δ(kx) dx =

∫ ∞

−∞
f (x)

[
1

|k|δ(x)

]
dx .

According to the criterion Eq. 1.93, therefore, δ(kx) and (1/|k|)δ(x) are equal.

Problem 1.44 Evaluate the following integrals:

(a)
∫ 6

2 (3x2 − 2x − 1) δ(x − 3) dx .

(b)
∫ 5

0 cos x δ(x − π) dx .

(c)
∫ 3

0 x3δ(x + 1) dx .

(d)
∫ ∞

−∞ ln(x + 3) δ(x + 2) dx .

Problem 1.45 Evaluate the following integrals:

(a)
∫ 2

−2(2x + 3) δ(3x) dx .

(b)
∫ 2

0 (x3 + 3x + 2) δ(1 − x) dx .

(c)
∫ 1

−1 9x2δ(3x + 1) dx .

(d)
∫ a

−∞ δ(x − b) dx .

Problem 1.46

(a) Show that

x
d

dx
(δ(x)) = −δ(x).

[Hint: Use integration by parts.]
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(b) Let θ(x) be the step function:

θ(x) ≡
⎧⎨
⎩

1, if x > 0

0, if x ≤ 0

⎫⎬
⎭ . (1.95)

Show that dθ/dx = δ(x).

1.5.3 The Three-Dimensional Delta Function

It is easy to generalize the delta function to three dimensions:

δ3(r) = δ(x) δ(y) δ(z). (1.96)

(As always, r ≡ x x̂ + y ŷ + z ẑ is the position vector, extending from the origin
to the point (x, y, z).) This three-dimensional delta function is zero everywhere
except at (0, 0, 0), where it blows up. Its volume integral is 1:

∫
all space

δ3(r) dτ =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(x) δ(y) δ(z) dx dy dz = 1. (1.97)

And, generalizing Eq. 1.92,
∫

all space
f (r)δ3(r − a) dτ = f (a). (1.98)

As in the one-dimensional case, integration with δ picks out the value of the func-
tion f at the location of the spike.

We are now in a position to resolve the paradox introduced in Sect. 1.5.1.
As you will recall, we found that the divergence of r̂/r2 is zero everywhere ex-
cept at the origin, and yet its integral over any volume containing the origin is a
constant (to wit: 4π ). These are precisely the defining conditions for the Dirac
delta function; evidently

∇ ·
(

r̂
r2

)
= 4πδ3(r). (1.99)

More generally,

∇ ·
( r̂
r2

)
= 4πδ3(r), (1.100)

where, as always, r is the separation vector: r ≡ r − r′. Note that differentiation
here is with respect to r, while r′ is held constant. Incidentally, since

∇
(

1

r

)
= − r̂

r2 (1.101)
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(Prob. 1.13b), it follows that

∇2 1

r = −4πδ3(r). (1.102)

Example 1.16. Evaluate the integral

J =
∫

V
(r2 + 2)∇ ·

(
r̂
r2

)
dτ,

where V is a sphere13 of radius R centered at the origin.

Solution 1
Use Eq. 1.99 to rewrite the divergence, and Eq. 1.98 to do the integral:

J =
∫

V
(r2 + 2)4πδ3(r) dτ = 4π(0 + 2) = 8π.

This one-line solution demonstrates something of the power and beauty of the
delta function, but I would like to show you a second method, which is much
more cumbersome but serves to illustrate the method of integration by parts
(Sect. 1.3.6).

Solution 2
Using Eq. 1.59, we transfer the derivative from r̂/r2 to (r2 + 2):

J = −
∫

V

r̂
r2

· [∇(r2 + 2)] dτ +
∮

S
(r2 + 2)

r̂
r2

· da.

The gradient is

∇(r2 + 2) = 2r r̂,

so the volume integral becomes
∫

2

r
dτ =

∫
2

r
r2 sin θ dr dθ dφ = 8π

∫ R

0
r dr = 4π R2.

Meanwhile, on the boundary of the sphere (where r = R),

da = R2 sin θ dθ dφ r̂,

so the surface integral is∫
(R2 + 2) sin θ dθ dφ = 4π(R2 + 2).

13In proper mathematical jargon, “sphere” denotes the surface, and “ball” the volume it encloses.
But physicists are (as usual) sloppy about this sort of thing, and I use the word “sphere” for both
the surface and the volume. Where the meaning is not clear from the context, I will write “spherical
surface” or “spherical volume.” The language police tell me that the former is redundant and the latter
an oxymoron, but a poll of my physics colleagues reveals that this is (for us) the standard usage.
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Putting it all together,

J = −4π R2 + 4π(R2 + 2) = 8π,

as before.

Problem 1.47

(a) Write an expression for the volume charge density ρ(r) of a point charge q at
r′. Make sure that the volume integral of ρ equals q.

(b) What is the volume charge density of an electric dipole, consisting of a point
charge −q at the origin and a point charge +q at a?

(c) What is the volume charge density (in spherical coordinates) of a uniform, in-
finitesimally thin spherical shell of radius R and total charge Q, centered at the
origin? [Beware: the integral over all space must equal Q.]

Problem 1.48 Evaluate the following integrals:

(a)
∫
(r 2 + r · a + a2)δ3(r − a) dτ , where a is a fixed vector, a is its magnitude,

and the integral is over all space.

(b)
∫
V |r − b|2δ3(5r) dτ , where V is a cube of side 2, centered on the origin, and

b = 4 ŷ + 3 ẑ.

(c)
∫
V

[
r 4 + r 2(r · c) + c4

]
δ3(r − c) dτ , where V is a sphere of radius 6 about the

origin, c = 5 x̂ + 3 ŷ + 2 ẑ, and c is its magnitude.

(d)
∫
V r · (d − r)δ3(e − r) dτ , where d = (1, 2, 3), e = (3, 2, 1), and V is a sphere

of radius 1.5 centered at (2, 2, 2).

Problem 1.49 Evaluate the integral

J =
∫
V

e−r

(
∇ · r̂

r 2

)
dτ

(where V is a sphere of radius R, centered at the origin) by two different methods,
as in Ex. 1.16.

1.6 THE THEORY OF VECTOR FIELDS

1.6.1 The Helmholtz Theorem

Ever since Faraday, the laws of electricity and magnetism have been expressed
in terms of electric and magnetic fields, E and B. Like many physical laws,
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these are most compactly expressed as differential equations. Since E and B are
vectors, the differential equations naturally involve vector derivatives: divergence
and curl. Indeed, Maxwell reduced the entire theory to four equations, specifying
respectively the divergence and the curl of E and B.

Maxwell’s formulation raises an important mathematical question: To what
extent is a vector function determined by its divergence and curl? In other words,
if I tell you that the divergence of F (which stands for E or B, as the case may be)
is a specified (scalar) function D,

∇ · F = D,

and the curl of F is a specified (vector) function C,

∇ × F = C,

(for consistency, C must be divergenceless,

∇ · C = 0,

because the divergence of a curl is always zero), can you then determine the
function F?

Well. . . not quite. For example, as you may have discovered in Prob. 1.20, there
are many functions whose divergence and curl are both zero everywhere—the triv-
ial case F = 0, of course, but also F = yz x̂ + zx ŷ + xy ẑ, F = sin x cosh y x̂ −
cos x sinh y ŷ, etc. To solve a differential equation you must also be supplied with
appropriate boundary conditions. In electrodynamics we typically require that
the fields go to zero “at infinity” (far away from all charges).14 With that ex-
tra information, the Helmholtz theorem guarantees that the field is uniquely
determined by its divergence and curl. (The Helmholtz theorem is discussed in
Appendix B.)

1.6.2 Potentials

If the curl of a vector field (F) vanishes (everywhere), then F can be written as the
gradient of a scalar potential (V ):

∇ × F = 0 ⇐⇒ F = −∇V . (1.103)

(The minus sign is purely conventional.) That’s the essential burden of the follow-
ing theorem:

Theorem 1
Curl-less (or “irrotational”) fields. The following conditions are equivalent
(that is, F satisfies one if and only if it satisfies all the others):

14In some textbook problems the charge itself extends to infinity (we speak, for instance, of the electric
field of an infinite plane, or the magnetic field of an infinite wire). In such cases the normal boundary
conditions do not apply, and one must invoke symmetry arguments to determine the fields uniquely.
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(a) ∇ × F = 0 everywhere.

(b)
∫ b

a F · dl is independent of path, for any given end points.

(c)
∮

F · dl = 0 for any closed loop.

(d) F is the gradient of some scalar function: F = −∇V .

The potential is not unique—any constant can be added to V with impunity, since
this will not affect its gradient.

If the divergence of a vector field (F) vanishes (everywhere), then F can be
expressed as the curl of a vector potential (A):

∇ · F = 0 ⇐⇒ F = ∇ × A. (1.104)

That’s the main conclusion of the following theorem:

Theorem 2
Divergence-less (or “solenoidal”) fields. The following conditions are equivalent:

(a) ∇ · F = 0 everywhere.

(b)
∫

F · da is independent of surface, for any given boundary line.

(c)
∮

F · da = 0 for any closed surface.

(d) F is the curl of some vector function: F = ∇ × A.

The vector potential is not unique—the gradient of any scalar function can be
added to A without affecting the curl, since the curl of a gradient is zero.

You should by now be able to prove all the connections in these theorems, save
for the ones that say (a), (b), or (c) implies (d). Those are more subtle, and will
come later. Incidentally, in all cases (whatever its curl and divergence may be) a
vector field F can be written as the gradient of a scalar plus the curl of a vector:15

F = −∇V + ∇ × A (always). (1.105)

Problem 1.50

(a) Let F1 = x2 ẑ and F2 = x x̂ + y ŷ + z ẑ. Calculate the divergence and curl of
F1 and F2. Which one can be written as the gradient of a scalar? Find a scalar
potential that does the job. Which one can be written as the curl of a vector?
Find a suitable vector potential.

15In physics, the word field denotes generically any function of position (x, y, z) and time (t). But in
electrodynamics two particular fields (E and B) are of such paramount importance as to preempt the
term. Thus technically the potentials are also “fields,” but we never call them that.
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(b) Show that F3 = yz x̂ + zx ŷ + xy ẑ can be written both as the gradient of a
scalar and as the curl of a vector. Find scalar and vector potentials for this func-
tion.

Problem 1.51 For Theorem 1, show that (d) ⇒ (a), (a) ⇒ (c), (c) ⇒ (b), (b) ⇒ (c),
and (c) ⇒ (a).

Problem 1.52 For Theorem 2, show that (d) ⇒ (a), (a) ⇒ (c), (c) ⇒ (b), (b) ⇒ (c),
and (c) ⇒ (a).

Problem 1.53

(a) Which of the vectors in Problem 1.15 can be expressed as the gradient of a
scalar? Find a scalar function that does the job.

(b) Which can be expressed as the curl of a vector? Find such a vector.

More Problems on Chapter 1

Problem 1.54 Check the divergence theorem for the function

v = r 2 cos θ r̂ + r 2 cos φ θ̂ − r 2 cos θ sin φ φ̂,

using as your volume one octant of the sphere of radius R (Fig. 1.48). Make sure
you include the entire surface. [Answer: π R4/4]

Problem 1.55 Check Stokes’ theorem using the function v = ay x̂ + bx ŷ (a and
b are constants) and the circular path of radius R, centered at the origin in the xy
plane. [Answer: π R2(b − a)]

Problem 1.56 Compute the line integral of

v = 6 x̂ + yz2 ŷ + (3y + z) ẑ

along the triangular path shown in Fig. 1.49. Check your answer using Stokes’
theorem. [Answer: 8/3]

Problem 1.57 Compute the line integral of

v = (r cos2 θ) r̂ − (r cos θ sin θ) θ̂ + 3r φ̂

around the path shown in Fig. 1.50 (the points are labeled by their Cartesian coor-
dinates). Do it either in cylindrical or in spherical coordinates. Check your answer,
using Stokes’ theorem. [Answer: 3π/2]
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Problem 1.58 Check Stokes’ theorem for the function v = y ẑ, using the triangular
surface shown in Fig. 1.51. [Answer: a2]

Problem 1.59 Check the divergence theorem for the function

v = r 2 sin θ r̂ + 4r 2 cos θ θ̂ + r 2 tan θ φ̂,

using the volume of the “ice-cream cone” shown in Fig. 1.52 (the top surface
is spherical, with radius R and centered at the origin). [Answer: (π R4/12)(2π +
3
√

3)]

Problem 1.60 Here are two cute checks of the fundamental theorems:

(a) Combine Corollary 2 to the gradient theorem with Stokes’ theorem (v = ∇T , in
this case). Show that the result is consistent with what you already knew about
second derivatives.

(b) Combine Corollary 2 to Stokes’ theorem with the divergence theorem. Show
that the result is consistent with what you already knew.

Problem 1.61 Although the gradient, divergence, and curl theorems are the fun-•
damental integral theorems of vector calculus, it is possible to derive a number of
corollaries from them. Show that:

(a)
∫
V (∇T ) dτ = ∮

S T da. [Hint: Let v = cT , where c is a constant, in the diver-
gence theorem; use the product rules.]

(b)
∫
V (∇ × v) dτ = − ∮

S v × da. [Hint: Replace v by (v × c) in the divergence
theorem.]

(c)
∫
V [T ∇2U + (∇T ) · (∇U )] dτ = ∮

S(T ∇U ) · da. [Hint: Let v = T ∇U in the
divergence theorem.]

(d)
∫
V (T ∇2U − U∇2T ) dτ = ∮

S(T ∇U − U∇T ) · da. [Comment: This is some-
times called Green’s second identity; it follows from (c), which is known as
Green’s identity.]

(e)
∫
S ∇T × da = − ∮

P T dl. [Hint: Let v = cT in Stokes’ theorem.]
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Problem 1.62 The integral•

a ≡
∫
S

da (1.106)

is sometimes called the vector area of the surface S. If S happens to be flat, then
|a| is the ordinary (scalar) area, obviously.

(a) Find the vector area of a hemispherical bowl of radius R.

(b) Show that a = 0 for any closed surface. [Hint: Use Prob. 1.61a.]

(c) Show that a is the same for all surfaces sharing the same boundary.

(d) Show that

a = 1
2

∮
r × dl, (1.107)

where the integral is around the boundary line. [Hint: One way to do it is to draw
the cone subtended by the loop at the origin. Divide the conical surface up into
infinitesimal triangular wedges, each with vertex at the origin and opposite side dl,
and exploit the geometrical interpretation of the cross product (Fig. 1.8).]

(e) Show that ∮
(c · r) dl = a × c, (1.108)

for any constant vector c. [Hint: Let T = c · r in Prob. 1.61e.]

Problem 1.63•
(a) Find the divergence of the function

v = r̂
r
.

First compute it directly, as in Eq. 1.84. Test your result using the divergence theo-
rem, as in Eq. 1.85. Is there a delta function at the origin, as there was for r̂/r 2? What
is the general formula for the divergence of rn r̂? [Answer: ∇ · (rn r̂) = (n + 2)rn−1,
unless n = −2, in which case it is 4πδ3(r); for n < −2, the divergence is ill-defined
at the origin.]

(b) Find the curl of rn r̂. Test your conclusion using Prob. 1.61b. [Answer:
∇ × (rn r̂) = 0]

Problem 1.64 In case you’re not persuaded that ∇2(1/r) = −4πδ3(r) (Eq. 1.102
with r′ = 0 for simplicity), try replacing r by

√
r 2 + ε2, and watching what happens

as ε → 0.16 Specifically, let

D(r, ε) ≡ − 1

4π
∇2 1√

r 2 + ε2
.

16This problem was suggested by Frederick Strauch.
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To demonstrate that this goes to δ3(r) as ε → 0:

(a) Show that D(r, ε) = (3ε2/4π)(r 2 + ε2)−5/2.

(b) Check that D(0, ε) → ∞, as ε → 0.

(c) Check that D(r, ε) → 0, as ε → 0, for all r �= 0.

(d) Check that the integral of D(r, ε) over all space is 1.
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7 Electrodynamics

7.1 ELECTROMOTIVE FORCE

7.1.1 Ohm’s Law

To make a current flow, you have to push on the charges. How fast they move,
in response to a given push, depends on the nature of the material. For most sub-
stances, the current density J is proportional to the force per unit charge, f:

J = σ f. (7.1)

The proportionality factor σ (not to be confused with surface charge) is an empir-
ical constant that varies from one material to another; it’s called the conductivity
of the medium. Actually, the handbooks usually list the reciprocal of σ , called
the resistivity: ρ = 1/σ (not to be confused with charge density—I’m sorry, but
we’re running out of Greek letters, and this is the standard notation). Some typical
values are listed in Table 7.1. Notice that even insulators conduct slightly, though
the conductivity of a metal is astronomically greater; in fact, for most purposes
metals can be regarded as perfect conductors, with σ = ∞, while for insulators
we can pretend σ = 0.

In principle, the force that drives the charges to produce the current could be
anything—chemical, gravitational, or trained ants with tiny harnesses. For our
purposes, though, it’s usually an electromagnetic force that does the job. In this
case Eq. 7.1 becomes

J = σ(E + v × B). (7.2)

Ordinarily, the velocity of the charges is sufficiently small that the second term
can be ignored:

J = σE. (7.3)

(However, in plasmas, for instance, the magnetic contribution to f can be signif-
icant.) Equation 7.3 is called Ohm’s law, though the physics behind it is really
contained in Eq. 7.1, of which 7.3 is just a special case.

I know: you’re confused because I said E = 0 inside a conductor (Sect. 2.5.1).
But that’s for stationary charges (J = 0). Moreover, for perfect conductors

296
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Material Resistivity Material Resistivity

Conductors: Semiconductors:
Silver 1.59 × 10−8 Sea water 0.2
Copper 1.68 × 10−8 Germanium 0.46
Gold 2.21 × 10−8 Diamond 2.7
Aluminum 2.65 × 10−8 Silicon 2500
Iron 9.61 × 10−8 Insulators:
Mercury 9.61 × 10−7 Water (pure) 8.3 × 103

Nichrome 1.08 × 10−6 Glass 109 − 1014

Manganese 1.44 × 10−6 Rubber 1013 − 1015

Graphite 1.6 × 10−5 Teflon 1022 − 1024

TABLE 7.1 Resistivities, in ohm-meters (all values are for 1 atm, 20◦ C). Data from
Handbook of Chemistry and Physics, 91st ed. (Boca Raton, Fla.: CRC Press, 2010) and
other references.

E = J/σ = 0 even if current is flowing. In practice, metals are such good con-
ductors that the electric field required to drive current in them is negligible. Thus
we routinely treat the connecting wires in electric circuits (for example) as equipo-
tentials. Resistors, by contrast, are made from poorly conducting materials.

Example 7.1. A cylindrical resistor of cross-sectional area A and length L is
made from material with conductivity σ . (See Fig. 7.1; as indicated, the cross
section need not be circular, but I do assume it is the same all the way down.) If we
stipulate that the potential is constant over each end, and the potential difference
between the ends is V , what current flows?

E

L

z

A

FIGURE 7.1

Solution
As it turns out, the electric field is uniform within the wire (I’ll prove this in a
moment). It follows from Eq. 7.3 that the current density is also uniform, so

I = J A = σ E A = σ A

L
V .
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Example 7.2. Two long coaxial metal cylinders (radii a and b) are separated
by material of conductivity σ (Fig. 7.2). If they are maintained at a potential
difference V , what current flows from one to the other, in a length L?

E

L

a

b

FIGURE 7.2

Solution
The field between the cylinders is

E = λ

2πε0s
ŝ,

where λ is the charge per unit length on the inner cylinder. The current is therefore

I =
∫

J · da = σ

∫
E · da = σ

ε0
λL .

(The integral is over any surface enclosing the inner cylinder.) Meanwhile, the
potential difference between the cylinders is

V = −
∫ a

b
E · dl = λ

2πε0
ln

(
b

a

)
,

so

I = 2πσ L

ln (b/a)
V .

As these examples illustrate, the total current flowing from one electrode to
the other is proportional to the potential difference between them:

V = I R. (7.4)

This, of course, is the more familiar version of Ohm’s law. The constant of propor-
tionality R is called the resistance; it’s a function of the geometry of the arrange-
ment and the conductivity of the medium between the electrodes. (In Ex. 7.1,
R = (L/σ A); in Ex. 7.2, R = ln (b/a)/2πσ L .) Resistance is measured in ohms
(�): an ohm is a volt per ampere. Notice that the proportionality between V and I
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is a direct consequence of Eq. 7.3: if you want to double V , you simply double the
charge on the electrodes—that doubles E, which (for an ohmic material) doubles
J, which doubles I .

For steady currents and uniform conductivity,

∇ · E = 1

σ
∇ · J = 0, (7.5)

(Eq. 5.33), and therefore the charge density is zero; any unbalanced charge re-
sides on the surface. (We proved this long ago, for the case of stationary charges,
using the fact that E = 0; evidently, it is still true when the charges are allowed
to move.) It follows, in particular, that Laplace’s equation holds within a homo-
geneous ohmic material carrying a steady current, so all the tools and tricks of
Chapter 3 are available for calculating the potential.

Example 7.3. I asserted that the field in Ex. 7.1 is uniform. Let’s prove it.

Solution
Within the cylinder V obeys Laplace’s equation. What are the boundary condi-
tions? At the left end the potential is constant—we may as well set it equal to
zero. At the right end the potential is likewise constant—call it V0. On the cylin-
drical surface, J · n̂ = 0, or else charge would be leaking out into the surround-
ing space (which we take to be nonconducting). Therefore E · n̂ = 0, and hence
∂V/∂n = 0. With V or its normal derivative specified on all surfaces, the poten-
tial is uniquely determined (Prob. 3.5). But it’s easy to guess one potential that
obeys Laplace’s equation and fits these boundary conditions:

V (z) = V0z

L
,

where z is measured along the axis. The uniqueness theorem guarantees that this
is the solution. The corresponding field is

E = −∇V = − V0

L
ẑ,

which is indeed uniform. �
Contrast the enormously more difficult problem that arises if the conducting

material is removed, leaving only a metal plate at either end (Fig. 7.3). Evidently

V = 0 V0

E

FIGURE 7.3
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in the present case charge arranges itself over the surface of the wire in just such
a way as to produce a nice uniform field within.1

I don’t suppose there is any formula in physics more familiar than Ohm’s law,
and yet it’s not really a true law, in the sense of Coulomb’s or Ampère’s; rather,
it is a “rule of thumb” that applies pretty well to many substances. You’re not
going to win a Nobel prize for finding an exception. In fact, when you stop to
think about it, it’s a little surprising that Ohm’s law ever holds. After all, a given
field E produces a force qE (on a charge q), and according to Newton’s second
law, the charge will accelerate. But if the charges are accelerating, why doesn’t
the current increase with time, growing larger and larger the longer you leave
the field on? Ohm’s law implies, on the contrary, that a constant field produces a
constant current, which suggests a constant velocity. Isn’t that a contradiction to
Newton’s law?

No, for we are forgetting the frequent collisions electrons make as they pass
down the wire. It’s a little like this: Suppose you’re driving down a street with
a stop sign at every intersection, so that, although you accelerate constantly in
between, you are obliged to start all over again with each new block. Your average
speed is then a constant, in spite of the fact that (save for the periodic abrupt stops)
you are always accelerating. If the length of a block is λ and your acceleration is
a, the time it takes to go a block is

t =
√

2λ

a
,

and hence your average velocity is

vave = 1

2
at =

√
λa

2
.

But wait! That’s no good either! It says that the velocity is proportional to the
square root of the acceleration, and therefore that the current should be propor-
tional to the square root of the field! There’s another twist to the story: In practice,
the charges are already moving very fast because of their thermal energy. But the
thermal velocities have random directions, and average to zero. The drift velocity
we are concerned with is a tiny extra bit (Prob. 5.20). So the time between col-
lisions is actually much shorter than we supposed; if we assume for the sake of
argument that all charges travel the same distance λ between collisions, then

t = λ

vthermal
,

and therefore

vave = 1

2
at = aλ

2vthermal
.

1Calculating this surface charge is not easy. See, for example, J. D. Jackson, Am. J. Phys. 64, 855
(1996). Nor is it a simple matter to determine the field outside the wire—see Prob. 7.43.
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If there are n molecules per unit volume, and f free electrons per molecule, each
with charge q and mass m, the current density is

J = n f qvave = n f qλ

2vthermal

F
m

=
(

n f λq2

2mvthermal

)
E. (7.6)

I don’t claim that the term in parentheses is an accurate formula for the con-
ductivity,2 but it does indicate the basic ingredients, and it correctly predicts that
conductivity is proportional to the density of the moving charges and (ordinarily)
decreases with increasing temperature.

As a result of all the collisions, the work done by the electrical force is con-
verted into heat in the resistor. Since the work done per unit charge is V and the
charge flowing per unit time is I , the power delivered is

P = V I = I 2 R. (7.7)

This is the Joule heating law. With I in amperes and R in ohms, P comes out in
watts (joules per second).

Problem 7.1 Two concentric metal spherical shells, of radius a and b, respectively,
are separated by weakly conducting material of conductivity σ (Fig. 7.4a).

(a) If they are maintained at a potential difference V , what current flows from one
to the other?

(b) What is the resistance between the shells?

(c) Notice that if b � a the outer radius (b) is irrelevant. How do you account
for that? Exploit this observation to determine the current flowing between two
metal spheres, each of radius a, immersed deep in the sea and held quite far apart
(Fig. 7.4b), if the potential difference between them is V . (This arrangement can
be used to measure the conductivity of sea water.)

a

b

(a)

σ

(b)

FIGURE 7.4

2This classical model (due to Drude) bears little resemblance to the modern quantum theory of con-
ductivity. See, for instance, D. Park’s Introduction to the Quantum Theory, 3rd ed., Chap. 15 (New
York: McGraw-Hill, 1992).
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Problem 7.2 A capacitor C has been charged up to potential V0; at time t = 0, it is
connected to a resistor R, and begins to discharge (Fig. 7.5a).

RI

(a)

+Q

−Q
R

C

I

(b)

V0

+Q

−Q

FIGURE 7.5

(a) Determine the charge on the capacitor as a function of time, Q(t). What is the
current through the resistor, I (t)?

(b) What was the original energy stored in the capacitor (Eq. 2.55)? By integrating
Eq. 7.7, confirm that the heat delivered to the resistor is equal to the energy lost
by the capacitor.

Now imagine charging up the capacitor, by connecting it (and the resistor) to
a battery of voltage V0, at time t = 0 (Fig. 7.5b).

(c) Again, determine Q(t) and I (t).

(d) Find the total energy output of the battery (
∫

V0 I dt). Determine the heat de-
livered to the resistor. What is the final energy stored in the capacitor? What
fraction of the work done by the battery shows up as energy in the capacitor?
[Notice that the answer is independent of R!]

Problem 7.3

(a) Two metal objects are embedded in weakly conducting material of conductivity
σ (Fig. 7.6). Show that the resistance between them is related to the capacitance
of the arrangement by

R = ε0

σC
.

(b) Suppose you connected a battery between 1 and 2, and charged them up to
a potential difference V0. If you then disconnect the battery, the charge will
gradually leak off. Show that V (t) = V0e−t/τ , and find the time constant, τ , in
terms of ε0 and σ .

σ1 2

FIGURE 7.6
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Problem 7.4 Suppose the conductivity of the material separating the cylinders in
Ex. 7.2 is not uniform; specifically, σ(s) = k/s, for some constant k. Find the re-
sistance between the cylinders. [Hint: Because σ is a function of position, Eq. 7.5
does not hold, the charge density is not zero in the resistive medium, and E does
not go like 1/s. But we do know that for steady currents I is the same across each
cylindrical surface. Take it from there.]

7.1.2 Electromotive Force

If you think about a typical electric circuit—a battery hooked up to a light bulb,
say (Fig. 7.7)—a perplexing question arises: In practice, the current is the same all
the way around the loop; why is this the case, when the only obvious driving force
is inside the battery? Off hand, you might expect a large current in the battery and
none at all in the lamp. Who’s doing the pushing, in the rest of the circuit, and how
does it happen that this push is exactly right to produce the same current in each
segment? What’s more, given that the charges in a typical wire move (literally)
at a snail’s pace (see Prob. 5.20), why doesn’t it take half an hour for the current
to reach the light bulb? How do all the charges know to start moving at the same
instant?

Answer: If the current were not the same all the way around (for instance, dur-
ing the first split second after the switch is closed), then charge would be piling up
somewhere, and—here’s the crucial point—the electric field of this accumulating
charge is in such a direction as to even out the flow. Suppose, for instance, that
the current into the bend in Fig. 7.8 is greater than the current out. Then charge
piles up at the “knee,” and this produces a field aiming away from the kink.3 This
field opposes the current flowing in (slowing it down) and promotes the current
flowing out (speeding it up) until these currents are equal, at which point there is
no further accumulation of charge, and equilibrium is established. It’s a beautiful
system, automatically self-correcting to keep the current uniform, and it does it
all so quickly that, in practice, you can safely assume the current is the same all
around the circuit, even in systems that oscillate at radio frequencies.

FIGURE 7.7

Iin

Iout

E

E

++
+
+
+ +

+

FIGURE 7.8

3The amount of charge involved is surprisingly small—see W. G. V. Rosser, Am. J. Phys. 38, 265
(1970); nevertheless, the resulting field can be detected experimentally—see R. Jacobs, A. de Salazar,
and A. Nassar, Am. J. Phys. 78, 1432 (2010).
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There are really two forces involved in driving current around a circuit: the
source, fs , which is ordinarily confined to one portion of the loop (a battery, say),
and an electrostatic force, which serves to smooth out the flow and communicate
the influence of the source to distant parts of the circuit:

f = fs + E. (7.8)

The physical agency responsible for fs can be many different things: in a battery
it’s a chemical force; in a piezoelectric crystal mechanical pressure is converted
into an electrical impulse; in a thermocouple it’s a temperature gradient that does
the job; in a photoelectric cell it’s light; and in a Van de Graaff generator the
electrons are literally loaded onto a conveyer belt and swept along. Whatever the
mechanism, its net effect is determined by the line integral of f around the circuit:

E ≡
∮

f · dl =
∮

fs · dl. (7.9)

(Because
∮

E · dl = 0 for electrostatic fields, it doesn’t matter whether you use
f or fs .) E is called the electromotive force, or emf, of the circuit. It’s a lousy
term, since this is not a force at all—it’s the integral of a force per unit charge.
Some people prefer the word electromotance, but emf is so established that I
think we’d better stick with it.

Within an ideal source of emf (a resistanceless battery,4 for instance), the net
force on the charges is zero (Eq. 7.1 with σ = ∞), so E = −fs . The potential
difference between the terminals (a and b) is therefore

V = −
∫ b

a
E · dl =

∫ b

a
fs · dl =

∮
fs · dl = E (7.10)

(we can extend the integral to the entire loop because fs = 0 outside the source).
The function of a battery, then, is to establish and maintain a voltage difference
equal to the electromotive force (a 6 V battery, for example, holds the positive ter-
minal 6 V above the negative terminal). The resulting electrostatic field drives cur-
rent around the rest of the circuit (notice, however, that inside the battery fs drives
current in the direction opposite to E).5

Because it’s the line integral of fs , E can be interpreted as the work done per
unit charge, by the source—indeed, in some books electromotive force is defined
this way. However, as you’ll see in the next section, there is some subtlety in-
volved in this interpretation, so I prefer Eq. 7.9.

4Real batteries have a certain internal resistance, r , and the potential difference between their termi-
nals is E − I r , when a current I is flowing. For an illuminating discussion of how batteries work, see
D. Roberts, Am. J. Phys. 51, 829 (1983).
5Current in an electric circuit is somewhat analogous to the flow of water in a closed system of pipes,
with gravity playing the role of the electrostatic field, and a pump (lifting the water up against gravity)
in the role of the battery. In this story height is analogous to voltage.
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Problem 7.5 A battery of emf E and internal resistance r is hooked up to a variable
“load” resistance, R. If you want to deliver the maximum possible power to the
load, what resistance R should you choose? (You can’t change E and r , of course.)

−σ

+σ E
Rh

FIGURE 7.9

Problem 7.6 A rectangular loop of wire is situated so that one end (height h) is
between the plates of a parallel-plate capacitor (Fig. 7.9), oriented parallel to the
field E. The other end is way outside, where the field is essentially zero. What
is the emf in this loop? If the total resistance is R, what current flows? Explain.
[Warning: This is a trick question, so be careful; if you have invented a perpetual
motion machine, there’s probably something wrong with it.]

7.1.3 Motional emf

In the last section, I listed several possible sources of electromotive force, batteries
being the most familiar. But I did not mention the commonest one of all: the
generator. Generators exploit motional emfs, which arise when you move a wire
through a magnetic field. Figure 7.10 suggests a primitive model for a generator.
In the shaded region there is a uniform magnetic field B, pointing into the page,
and the resistor R represents whatever it is (maybe a light bulb or a toaster) we’re
trying to drive current through. If the entire loop is pulled to the right with speed v,
the charges in segment ab experience a magnetic force whose vertical component
qvB drives current around the loop, in the clockwise direction. The emf is

E =
∮

fmag · dl = vBh, (7.11)

where h is the width of the loop. (The horizontal segments bc and ad contribute
nothing, since the force there is perpendicular to the wire.)

Notice that the integral you perform to calculate E (Eq. 7.9 or 7.11) is carried
out at one instant of time—take a “snapshot” of the loop, if you like, and work

R vh

c

d

x

b

a

FIGURE 7.10
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from that. Thus dl, for the segment ab in Fig. 7.10, points straight up, even though
the loop is moving to the right. You can’t quarrel with this—it’s simply the way
emf is defined—but it is important to be clear about it.

In particular, although the magnetic force is responsible for establishing the
emf, it is not doing any work—magnetic forces never do work. Who, then, is
supplying the energy that heats the resistor? Answer: The person who’s pulling on
the loop. With the current flowing, the free charges in segment ab have a vertical
velocity (call it u) in addition to the horizontal velocity v they inherit from the
motion of the loop. Accordingly, the magnetic force has a component qu B to the
left. To counteract this, the person pulling on the wire must exert a force per unit
charge

fpull = u B

to the right (Fig. 7.11). This force is transmitted to the charge by the structure of
the wire.

Meanwhile, the particle is actually moving in the direction of the resultant ve-
locity w, and the distance it goes is (h/ cos θ ). The work done per unit charge is
therefore ∫

fpull · dl = (u B)

(
h

cos θ

)
sin θ = vBh = E

(sin θ coming from the dot product). As it turns out, then, the work done per unit
charge is exactly equal to the emf, though the integrals are taken along entirely
different paths (Fig. 7.12), and completely different forces are involved. To calcu-
late the emf, you integrate around the loop at one instant, but to calculate the work
done you follow a charge in its journey around the loop; fpull contributes nothing to
the emf, because it is perpendicular to the wire, whereas fmag contributes nothing
to work because it is perpendicular to the motion of the charge.6

There is a particularly nice way of expressing the emf generated in a moving
loop. Let � be the flux of B through the loop:

� ≡
∫

B · da. (7.12)

θ

θ

fmag

fpull

u

v

w

vB

uB

FIGURE 7.11

6For further discussion, see E. P. Mosca, Am. J. Phys. 42, 295 (1974).



7.1 Electromotive Force 307

b

(a)  Integration path for computing
E (follow the wire at one instant
of time).

(b)  Integration path for calculating  work
done (follow the  charge around the loop).

da a

h/cos θ

a′ d

h

a′

c b c

FIGURE 7.12

For the rectangular loop in Fig. 7.10,

� = Bhx .

As the loop moves, the flux decreases:

d�

dt
= Bh

dx

dt
= −Bhv.

(The minus sign accounts for the fact that dx/dt is negative.) But this is precisely
the emf (Eq. 7.11); evidently the emf generated in the loop is minus the rate of
change of flux through the loop:

E = −d�

dt
. (7.13)

This is the flux rule for motional emf.
Apart from its delightful simplicity, the flux rule has the virtue of applying to

nonrectangular loops moving in arbitrary directions through nonuniform mag-
netic fields; in fact, the loop need not even maintain a fixed shape.

Proof. Figure 7.13 shows a loop of wire at time t , and also a short time dt later.
Suppose we compute the flux at time t , using surface S, and the flux at time
t + dt , using the surface consisting of S plus the “ribbon” that connects the new
position of the loop to the old. The change in flux, then, is

d� = �(t + dt) − �(t) = �ribbon =
∫

ribbon
B · da.

Focus your attention on point P: in time dt , it moves to P ′. Let v be the velocity of
the wire, and u the velocity of a charge down the wire; w = v + u is the resultant
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Loop at
time t

Loop at
time ( t + dt)

Ribbon

P
P P′

P′

Surface S

θ
dl

vdt

Enlargement of da

da

FIGURE 7.13

velocity of a charge at P . The infinitesimal element of area on the ribbon can be
written as

da = (v × dl) dt

(see inset in Fig. 7.13). Therefore

d�

dt
=

∮
B · (v × dl).

Since w = (v + u) and u is parallel to dl, we can just as well write this as
d�

dt
=

∮
B · (w × dl).

Now, the scalar triple-product can be rewritten:

B · (w × dl) = −(w × B) · dl,

so
d�

dt
= −

∮
(w × B) · dl.

But (w × B) is the magnetic force per unit charge, fmag, so

d�

dt
= −

∮
fmag · dl,

and the integral of fmag is the emf:

E = −d�

dt
. �

There is a sign ambiguity in the definition of emf (Eq. 7.9): Which way around
the loop are you supposed to integrate? There is a compensatory ambiguity in the
definition of flux (Eq. 7.12): Which is the positive direction for da? In applying
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b

a

B (into page)

A

FIGURE 7.14

the flux rule, sign consistency is governed (as always) by your right hand: If your
fingers define the positive direction around the loop, then your thumb indicates
the direction of da. Should the emf come out negative, it means the current will
flow in the negative direction around the circuit.

The flux rule is a nifty short-cut for calculating motional emfs. It does not con-
tain any new physics—just the Lorentz force law. But it can lead to error or ambi-
guity if you’re not careful. The flux rule assumes you have a single wire loop—it
can move, rotate, stretch, or distort (continuously), but beware of switches, sliding
contacts, or extended conductors allowing a variety of current paths. A standard
“flux rule paradox” involves the circuit in Figure 7.14. When the switch is thrown
(from a to b) the flux through the circuit doubles, but there’s no motional emf
(no conductor moving through a magnetic field), and the ammeter (A) records no
current.

Example 7.4. A metal disk of radius a rotates with angular velocity ω about a
vertical axis, through a uniform field B, pointing up. A circuit is made by connect-
ing one end of a resistor to the axle and the other end to a sliding contact, which
touches the outer edge of the disk (Fig. 7.15). Find the current in the resistor.

I

(Sliding contact)

B B

R

FIGURE 7.15

Solution
The speed of a point on the disk at a distance s from the axis is v = ωs, so the
force per unit charge is fmag = v × B = ωs B ŝ. The emf is therefore

E =
∫ a

0
fmag ds = ωB

∫ a

0
s ds = ωBa2

2
,
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and the current is

I = E
R

= ωBa2

2R
.

Example 7.4 (the Faraday disk, or Faraday dynamo) involves a motional
emf that you can’t calculate (at least, not directly) from the flux rule. The flux rule
assumes the current flows along a well-defined path, whereas in this example the
current spreads out over the whole disk. It’s not even clear what the “flux through
the circuit” would mean in this context.

Even more tricky is the case of eddy currents. Take a chunk of aluminum
(say), and shake it around in a nonuniform magnetic field. Currents will be gen-
erated in the material, and you will feel a kind of “viscous drag”—as though you
were pulling the block through molasses (this is the force I called fpull in the dis-
cussion of motional emf). Eddy currents are notoriously difficult to calculate,7 but
easy and dramatic to demonstrate. You may have witnessed the classic experiment
in which an aluminum disk mounted as a pendulum on a horizontal axis swings
down and passes between the poles of a magnet (Fig. 7.16a). When it enters the
field region it suddenly slows way down. To confirm that eddy currents are re-
sponsible, one repeats the demonstration using a disk that has many slots cut in it,
to prevent the flow of large-scale currents (Fig. 7.16b). This time the disk swings
freely, unimpeded by the field.

(a) (b)

FIGURE 7.16

Problem 7.7 A metal bar of mass m slides frictionlessly on two parallel conducting
rails a distance l apart (Fig. 7.17). A resistor R is connected across the rails, and a
uniform magnetic field B, pointing into the page, fills the entire region.

7See, for example, W. M. Saslow, Am. J. Phys., 60, 693 (1992).
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R l

m

v

FIGURE 7.17

(a) If the bar moves to the right at speed v, what is the current in the resistor? In
what direction does it flow?

(b) What is the magnetic force on the bar? In what direction?

(c) If the bar starts out with speed v0 at time t = 0, and is left to slide, what is its
speed at a later time t?

(d) The initial kinetic energy of the bar was, of course, 1
2 mv0

2. Check that the en-
ergy delivered to the resistor is exactly 1

2 mv0
2.

Problem 7.8 A square loop of wire (side a) lies on a table, a distance s from a very
long straight wire, which carries a current I , as shown in Fig. 7.18.

s

a

a

I

FIGURE 7.18

(a) Find the flux of B through the loop.

(b) If someone now pulls the loop directly away from the wire, at speed v, what
emf is generated? In what direction (clockwise or counterclockwise) does the
current flow?

(c) What if the loop is pulled to the right at speed v?

Problem 7.9 An infinite number of different surfaces can be fit to a given boundary
line, and yet, in defining the magnetic flux through a loop, � = ∫

B · da, I never
specified the particular surface to be used. Justify this apparent oversight.

Problem 7.10 A square loop (side a) is mounted on a vertical shaft and rotated at
angular velocity ω (Fig. 7.19). A uniform magnetic field B points to the right. Find
the E(t) for this alternating current generator.

Problem 7.11 A square loop is cut out of a thick sheet of aluminum. It is then placed
so that the top portion is in a uniform magnetic field B, and is allowed to fall under
gravity (Fig. 7.20). (In the diagram, shading indicates the field region; B points into
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the page.) If the magnetic field is 1 T (a pretty standard laboratory field), find the
terminal velocity of the loop (in m/s). Find the velocity of the loop as a function of
time. How long does it take (in seconds) to reach, say, 90% of the terminal velocity?
What would happen if you cut a tiny slit in the ring, breaking the circuit? [Note:
The dimensions of the loop cancel out; determine the actual numbers, in the units
indicated.]

B a

a

ω

FIGURE 7.19 FIGURE 7.20

7.2 ELECTROMAGNETIC INDUCTION

7.2.1 Faraday’s Law

In 1831 Michael Faraday reported on a series of experiments, including three that
(with some violence to history) can be characterized as follows:

Experiment 1. He pulled a loop of wire to the right through a magnetic field
(Fig. 7.21a). A current flowed in the loop.

Experiment 2. He moved the magnet to the left, holding the loop still (Fig. 7.21b).
Again, a current flowed in the loop.

Experiment 3. With both the loop and the magnet at rest (Fig. 7.21c), he changed
the strength of the field (he used an electromagnet, and varied the current
in the coil). Once again, current flowed in the loop.

B (in)

II

B (in)

I

B

(a) (b) (c)
changing

magnetic field

v v

FIGURE 7.21
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The first experiment, of course, is a straightforward case of motional emf;
according to the flux rule:

E = −d�

dt
.

I don’t think it will surprise you to learn that exactly the same emf arises in Ex-
periment 2—all that really matters is the relative motion of the magnet and the
loop. Indeed, in the light of special relativity it has to be so. But Faraday knew
nothing of relativity, and in classical electrodynamics this simple reciprocity is a
remarkable coincidence. For if the loop moves, it’s a magnetic force that sets up
the emf, but if the loop is stationary, the force cannot be magnetic—stationary
charges experience no magnetic forces. In that case, what is responsible? What
sort of field exerts a force on charges at rest? Well, electric fields do, of course,
but in this case there doesn’t seem to be any electric field in sight.

Faraday had an ingenious inspiration:

A changing magnetic field induces an electric field.

It is this induced8 electric field that accounts for the emf in Experiment 2.9 Indeed,
if (as Faraday found empirically) the emf is again equal to the rate of change of
the flux,

E =
∮

E · dl = −d�

dt
, (7.14)

then E is related to the change in B by the equation
∮

E · dl = −
∫

∂B
∂t

· da. (7.15)

This is Faraday’s law, in integral form. We can convert it to differential form by
applying Stokes’ theorem:

∇ × E = −∂B
∂t

. (7.16)

8“Induce” is a subtle and slippery verb. It carries a faint odor of causation (“produce” would make
this explicit) without quite committing itself. There is a sterile ongoing debate in the literature as to
whether a changing magnetic field should be regarded as an independent “source” of electric fields
(along with electric charge)—after all, the magnetic field itself is due to electric currents. It’s like
asking whether the postman is the “source” of my mail. Well, sure—he delivered it to my door. On the
other hand, Grandma wrote the letter. Ultimately, ρ and J are the sources of all electromagnetic fields,
and a changing magnetic field merely delivers electromagnetic news from currents elsewhere. But it
is often convenient to think of a changing magnetic field “producing” an electric field, and it won’t
hurt you as long as you understand that this is the condensed version of a more complicated story. For
a nice discussion, see S. E. Hill, Phys. Teach. 48, 410 (2010).
9You might argue that the magnetic field in Experiment 2 is not really changing—just moving. What
I mean is that if you sit at a fixed location, the field you experience changes as the magnet passes by.
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Note that Faraday’s law reduces to the old rule
∮

E · dl = 0 (or, in differential
form, ∇ × E = 0) in the static case (constant B) as, of course, it should.

In Experiment 3, the magnetic field changes for entirely different reasons, but
according to Faraday’s law an electric field will again be induced, giving rise to
an emf −d�/dt . Indeed, one can subsume all three cases (and for that matter any
combination of them) into a kind of universal flux rule:

Whenever (and for whatever reason) the magnetic flux through a
loop changes, an emf

E = −d�

dt
(7.17)

will appear in the loop.

Many people call this “Faraday’s law.” Maybe I’m overly fastidious, but I find this
confusing. There are really two totally different mechanisms underlying Eq. 7.17,
and to identify them both as “Faraday’s law” is a little like saying that because
identical twins look alike we ought to call them by the same name. In Faraday’s
first experiment it’s the Lorentz force law at work; the emf is magnetic. But in the
other two it’s an electric field (induced by the changing magnetic field) that does
the job. Viewed in this light, it is quite astonishing that all three processes yield
the same formula for the emf. In fact, it was precisely this “coincidence” that led
Einstein to the special theory of relativity—he sought a deeper understanding of
what is, in classical electrodynamics, a peculiar accident. But that’s a story for
Chapter 12. In the meantime, I shall reserve the term “Faraday’s law” for electric
fields induced by changing magnetic fields, and I do not regard Experiment 1 as
an instance of Faraday’s law.

Example 7.5. A long cylindrical magnet of length L and radius a carries a uni-
form magnetization M parallel to its axis. It passes at constant velocity v through
a circular wire ring of slightly larger diameter (Fig. 7.22). Graph the emf induced
in the ring, as a function of time.

L

aM
v

FIGURE 7.22

Solution
The magnetic field is the same as that of a long solenoid with surface current
Kb = M φ̂. So the field inside is B = μ0M, except near the ends, where it starts
to spread out. The flux through the ring is zero when the magnet is far away; it
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builds up to a maximum of μ0 Mπa2 as the leading end passes through; and it
drops back to zero as the trailing end emerges (Fig. 7.23a). The emf is (minus)
the derivative of � with respect to time, so it consists of two spikes, as shown in
Fig. 7.23b.

L/v t

μ0Mπa2

φ

t

E

(a) (b)

FIGURE 7.23

Keeping track of the signs in Faraday’s law can be a real headache. For in-
stance, in Ex. 7.5 we would like to know which way around the ring the induced
current flows. In principle, the right-hand rule does the job (we called � positive
to the left, in Fig. 7.22, so the positive direction for current in the ring is counter-
clockwise, as viewed from the left; since the first spike in Fig. 7.23b is negative,
the first current pulse flows clockwise, and the second counterclockwise). But
there’s a handy rule, called Lenz’s law, whose sole purpose is to help you get the
directions right:10

Nature abhors a change in flux.

The induced current will flow in such a direction that the flux it produces tends
to cancel the change. (As the front end of the magnet in Ex. 7.5 enters the ring,
the flux increases, so the current in the ring must generate a field to the right—it
therefore flows clockwise.) Notice that it is the change in flux, not the flux it-
self, that nature abhors (when the tail end of the magnet exits the ring, the flux
drops, so the induced current flows counterclockwise, in an effort to restore it).
Faraday induction is a kind of “inertial” phenomenon: A conducting loop “likes”
to maintain a constant flux through it; if you try to change the flux, the loop re-
sponds by sending a current around in such a direction as to frustrate your efforts.
(It doesn’t succeed completely; the flux produced by the induced current is typi-
cally only a tiny fraction of the original. All Lenz’s law tells you is the direction of
the flow.)

10Lenz’s law applies to motional emfs, too, but for them it is usually easier to get the direction of the
current from the Lorentz force law.
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Example 7.6. The “jumping ring” demonstration. If you wind a solenoidal
coil around an iron core (the iron is there to beef up the magnetic field), place
a metal ring on top, and plug it in, the ring will jump several feet in the air
(Fig. 7.24). Why?

B

ring

solenoid

FIGURE 7.24

Solution
Before you turned on the current, the flux through the ring was zero. Afterward a
flux appeared (upward, in the diagram), and the emf generated in the ring led to a
current (in the ring) which, according to Lenz’s law, was in such a direction that
its field tended to cancel this new flux. This means that the current in the loop is
opposite to the current in the solenoid. And opposite currents repel, so the ring
flies off.11

Problem 7.12 A long solenoid, of radius a, is driven by an alternating current, so
that the field inside is sinusoidal: B(t) = B0 cos(ωt) ẑ. A circular loop of wire, of
radius a/2 and resistance R, is placed inside the solenoid, and coaxial with it. Find
the current induced in the loop, as a function of time.

Problem 7.13 A square loop of wire, with sides of length a, lies in the first quadrant
of the xy plane, with one corner at the origin. In this region, there is a nonuniform
time-dependent magnetic field B(y, t) = ky3t2 ẑ (where k is a constant). Find the
emf induced in the loop.

Problem 7.14 As a lecture demonstration a short cylindrical bar magnet is dropped
down a vertical aluminum pipe of slightly larger diameter, about 2 meters long. It
takes several seconds to emerge at the bottom, whereas an otherwise identical piece
of unmagnetized iron makes the trip in a fraction of a second. Explain why the
magnet falls more slowly.12

11For further discussion of the jumping ring (and the related “floating ring”), see C. S. Schneider and
J. P. Ertel, Am. J. Phys. 66, 686 (1998); P. J. H. Tjossem and E. C. Brost, Am. J. Phys. 79, 353 (2011).
12For a discussion of this amazing demonstration see K. D. Hahn et al., Am. J. Phys. 66, 1066 (1998)
and G. Donoso, C. L. Ladera, and P. Martin, Am. J. Phys. 79, 193 (2011).



7.2 Electromagnetic Induction 317

7.2.2 The Induced Electric Field

Faraday’s law generalizes the electrostatic rule ∇ × E = 0 to the time-dependent
régime. The divergence of E is still given by Gauss’s law (∇ · E = 1

ε0
ρ). If E is a

pure Faraday field (due exclusively to a changing B, with ρ = 0), then

∇ · E = 0, ∇ × E = −∂B
∂t

.

This is mathematically identical to magnetostatics,

∇ · B = 0, ∇ × B = μ0J.

Conclusion: Faraday-induced electric fields are determined by −(∂B/∂t) in ex-
actly the same way as magnetostatic fields are determined by μ0J. The analog to
Biot-Savart is13 is

E = − 1

4π

∫
(∂B/∂t) × r̂

r2 dτ = − 1

4π

∂

∂t

∫
B × r̂
r2 dτ, (7.18)

and if symmetry permits, we can use all the tricks associated with Ampère’s law
in integral form (

∮
B · dl = μ0 Ienc), only now it’s Faraday’s law in integral form:

∮
E · dl = −d�

dt
. (7.19)

The rate of change of (magnetic) flux through the Amperian loop plays the role
formerly assigned to μ0 Ienc.

Example 7.7. A uniform magnetic field B(t), pointing straight up, fills the
shaded circular region of Fig. 7.25. If B is changing with time, what is the in-
duced electric field?

Solution
E points in the circumferential direction, just like the magnetic field inside a long
straight wire carrying a uniform current density. Draw an Amperian loop of radius
s, and apply Faraday’s law:

∮
E · dl = E(2πs) = −d�

dt
= − d

dt

(
πs2 B(t)

) = −πs2 d B

dt
.

Therefore

E = − s

2

d B

dt
φ̂.

If B is increasing, E runs clockwise, as viewed from above.

13Magnetostatics holds only for time-independent currents, but there is no such restriction on ∂B/∂t .
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B(t)

Amperian loop

s

FIGURE 7.25
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FIGURE 7.26

Example 7.8. A line charge λ is glued onto the rim of a wheel of radius b, which
is then suspended horizontally, as shown in Fig. 7.26, so that it is free to rotate (the
spokes are made of some nonconducting material—wood, maybe). In the central
region, out to radius a, there is a uniform magnetic field B0, pointing up. Now
someone turns the field off. What happens?

Solution
The changing magnetic field will induce an electric field, curling around the axis
of the wheel. This electric field exerts a force on the charges at the rim, and the
wheel starts to turn. According to Lenz’s law, it will rotate in such a direction that
its field tends to restore the upward flux. The motion, then, is counterclockwise,
as viewed from above.

Faraday’s law, applied to the loop at radius b, says

∮
E · dl = E(2πb) = −d�

dt
= −πa2 d B

dt
, or E = − a2

2b

d B

dt
φ̂.

The torque on a segment of length dl is (r × F), or bλE dl. The total torque on
the wheel is therefore

N = bλ

(
− a2

2b

d B

dt

) ∮
dl = −bλπa2 d B

dt
,

and the angular momentum imparted to the wheel is
∫

Ndt = −λπa2b
∫ 0

B0

d B = λπa2bB0.

It doesn’t matter how quickly or slowly you turn off the field; the resulting angular
velocity of the wheel is the same regardless. (If you find yourself wondering where
the angular momentum came from, you’re getting ahead of the story! Wait for the
next chapter.)

Note that it’s the electric field that did the rotating. To convince you of this,
I deliberately set things up so that the magnetic field is zero at the location of
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the charge. The experimenter may tell you she never put in any electric field—all
she did was switch off the magnetic field. But when she did that, an electric field
automatically appeared, and it’s this electric field that turned the wheel.

I must warn you, now, of a small fraud that tarnishes many applications of
Faraday’s law: Electromagnetic induction, of course, occurs only when the mag-
netic fields are changing, and yet we would like to use the apparatus of mag-
netostatics (Ampère’s law, the Biot-Savart law, and the rest) to calculate those
magnetic fields. Technically, any result derived in this way is only approximately
correct. But in practice the error is usually negligible, unless the field fluctuates
extremely rapidly, or you are interested in points very far from the source. Even
the case of a wire snipped by a pair of scissors (Prob. 7.18) is static enough for
Ampère’s law to apply. This régime, in which magnetostatic rules can be used to
calculate the magnetic field on the right hand side of Faraday’s law, is called
quasistatic. Generally speaking, it is only when we come to electromagnetic
waves and radiation that we must worry seriously about the breakdown of mag-
netostatics itself.

Example 7.9. An infinitely long straight wire carries a slowly varying current
I (t). Determine the induced electric field, as a function of the distance s from the
wire.14

l

I

s0
s

Amperian loop

FIGURE 7.27

Solution
In the quasistatic approximation, the magnetic field is (μ0 I/2πs), and it circles
around the wire. Like the B-field of a solenoid, E here runs parallel to the axis.
For the rectangular “Amperian loop” in Fig. 7.27, Faraday’s law gives:∮

E · dl = E(s0)l − E(s)l = − d

dt

∫
B · da

= −μ0l

2π

d I

dt

∫ s

s0

1

s ′ ds ′ = −μ0l

2π

d I

dt
(ln s − ln s0).

14This example is artificial, and not just in the obvious sense of involving infinite wires, but in a more
subtle respect. It assumes that the current is the same (at any given instant) all the way down the
line. This is a safe assumption for the short wires in typical electric circuits, but not for long wires
(transmission lines), unless you supply a distributed and synchronized driving mechanism. But never
mind—the problem doesn’t inquire how you would produce such a current; it only asks what fields
would result if you did. Variations on this problem are discussed by M. A. Heald, Am. J. Phys. 54,
1142 (1986).
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Thus

E(s) =
[

μ0

2π

d I

dt
ln s + K

]
ẑ, (7.20)

where K is a constant (that is to say, it is independent of s—it might still be a
function of t). The actual value of K depends on the whole history of the function
I (t)—we’ll see some examples in Chapter 10.

Equation 7.20 has the peculiar implication that E blows up as s goes to infin-
ity. That can’t be true . . . What’s gone wrong? Answer: We have overstepped the
limits of the quasistatic approximation. As we shall see in Chapter 9, electromag-
netic “news” travels at the speed of light, and at large distances B depends not
on the current now, but on the current as it was at some earlier time (indeed, a
whole range of earlier times, since different points on the wire are different dis-
tances away). If τ is the time it takes I to change substantially, then the quasistatic
approximation should hold only for

s � cτ, (7.21)

and hence Eq. 7.20 simply does not apply, at extremely large s.

Problem 7.15 A long solenoid with radius a and n turns per unit length carries a
time-dependent current I (t) in the φ̂ direction. Find the electric field (magnitude
and direction) at a distance s from the axis (both inside and outside the solenoid),
in the quasistatic approximation.

Problem 7.16 An alternating current I = I0 cos (ωt) flows down a long straight
wire, and returns along a coaxial conducting tube of radius a.

(a) In what direction does the induced electric field point (radial, circumferential,
or longitudinal)?

(b) Assuming that the field goes to zero as s → ∞, find E(s, t).15

Problem 7.17 A long solenoid of radius a, carrying n turns per unit length, is looped
by a wire with resistance R, as shown in Fig. 7.28.

R

FIGURE 7.28

15This is not at all the way electric fields actually behave in coaxial cables, for reasons suggested in
the previous footnote. See Sect. 9.5.3, or J. G. Cherveniak, Am. J. Phys., 54, 946 (1986), for a more
realistic treatment.
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(a) If the current in the solenoid is increasing at a constant rate (d I/dt = k), what
current flows in the loop, and which way (left or right) does it pass through the
resistor?

(b) If the current I in the solenoid is constant but the solenoid is pulled out of the
loop (toward the left, to a place far from the loop), what total charge passes
through the resistor?

Problem 7.18 A square loop, side a, resistance R, lies a distance s from an infinite
straight wire that carries current I (Fig. 7.29). Now someone cuts the wire, so I
drops to zero. In what direction does the induced current in the square loop flow,
and what total charge passes a given point in the loop during the time this current
flows? If you don’t like the scissors model, turn the current down gradually:

I (t) =
{

(1 − αt)I, for 0 ≤ t ≤ 1/α,

0, for t > 1/α.

a

a

s

I

FIGURE 7.29

Problem 7.19 A toroidal coil has a rectangular cross section, with inner radius a,
outer radius a + w, and height h. It carries a total of N tightly wound turns, and
the current is increasing at a constant rate (d I/dt = k). If w and h are both much
less than a, find the electric field at a point z above the center of the toroid. [Hint:
Exploit the analogy between Faraday fields and magnetostatic fields, and refer to
Ex. 5.6.]

Problem 7.20 Where is ∂B/∂t nonzero, in Figure 7.21(b)? Exploit the analogy
between Faraday’s law and Ampère’s law to sketch (qualitatively) the electric field.

Problem 7.21 Imagine a uniform magnetic field, pointing in the z direction and
filling all space (B = B0 ẑ). A positive charge is at rest, at the origin. Now somebody
turns off the magnetic field, thereby inducing an electric field. In what direction does
the charge move?16

7.2.3 Inductance

Suppose you have two loops of wire, at rest (Fig. 7.30). If you run a steady current
I1 around loop 1, it produces a magnetic field B1. Some of the field lines pass

16This paradox was suggested by Tom Colbert. Refer to Problem 2.55.
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FIGURE 7.30
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FIGURE 7.31

through loop 2; let �2 be the flux of B1 through 2. You might have a tough time
actually calculating B1, but a glance at the Biot-Savart law,

B1 = μ0

4π
I1

∮
dl1 × r̂
r2 ,

reveals one significant fact about this field: It is proportional to the current I1.
Therefore, so too is the flux through loop 2:

�2 =
∫

B1 · da2.

Thus

�2 = M21 I1, (7.22)

where M21 is the constant of proportionality; it is known as the mutual induc-
tance of the two loops.

There is a cute formula for the mutual inductance, which you can derive by
expressing the flux in terms of the vector potential, and invoking Stokes’ theorem:

�2 =
∫

B1 · da2 =
∫

(∇ × A1) · da2 =
∮

A1 · dl2.

Now, according to Eq. 5.66,

A1 = μ0 I1

4π

∮
dl1
r ,

and hence

�2 = μ0 I1

4π

∮ (∮
dl1
r

)
· dl2.

Evidently

M21 = μ0

4π

∮ ∮
dl1 · dl2
r . (7.23)
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This is the Neumann formula; it involves a double line integral—one integration
around loop 1, the other around loop 2 (Fig. 7.31). It’s not very useful for practical
calculations, but it does reveal two important things about mutual inductance:

1. M21 is a purely geometrical quantity, having to do with the sizes, shapes,
and relative positions of the two loops.

2. The integral in Eq. 7.23 is unchanged if we switch the roles of loops 1 and
2; it follows that

M21 = M12. (7.24)

This is an astonishing conclusion: Whatever the shapes and positions of the
loops, the flux through 2 when we run a current I around 1 is identical to
the flux through 1 when we send the same current I around 2. We may as
well drop the subscripts and call them both M .

Example 7.10. A short solenoid (length l and radius a, with n1 turns per unit
length) lies on the axis of a very long solenoid (radius b, n2 turns per unit length)
as shown in Fig. 7.32. Current I flows in the short solenoid. What is the flux
through the long solenoid?

l
b

a

FIGURE 7.32

Solution
Since the inner solenoid is short, it has a very complicated field; moreover, it puts
a different flux through each turn of the outer solenoid. It would be a miserable
task to compute the total flux this way. However, if we exploit the equality of the
mutual inductances, the problem becomes very easy. Just look at the reverse situ-
ation: run the current I through the outer solenoid, and calculate the flux through
the inner one. The field inside the long solenoid is constant:

B = μ0n2 I

(Eq. 5.59), so the flux through a single loop of the short solenoid is

Bπa2 = μ0n2 Iπa2.

There are n1l turns in all, so the total flux through the inner solenoid is

� = μ0πa2n1n2l I.
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This is also the flux a current I in the short solenoid would put through the long
one, which is what we set out to find. Incidentally, the mutual inductance, in this
case, is

M = μ0πa2n1n2l.

Suppose, now, that you vary the current in loop 1. The flux through loop 2 will
vary accordingly, and Faraday’s law says this changing flux will induce an emf in
loop 2:

E2 = −d�2

dt
= −M

d I1

dt
. (7.25)

(In quoting Eq. 7.22—which was based on the Biot-Savart law—I am tacitly
assuming that the currents change slowly enough for the system to be consid-
ered quasistatic.) What a remarkable thing: Every time you change the current
in loop 1, an induced current flows in loop 2—even though there are no wires
connecting them!

Come to think of it, a changing current not only induces an emf in any nearby
loops, it also induces an emf in the source loop itself (Fig 7.33). Once again, the
field (and therefore also the flux) is proportional to the current:

� = L I. (7.26)

The constant of proportionality L is called the self inductance (or simply the
inductance) of the loop. As with M , it depends on the geometry (size and shape)
of the loop. If the current changes, the emf induced in the loop is

E = −L
d I

dt
. (7.27)

Inductance is measured in henries (H); a henry is a volt-second per ampere.

B

B

I

FIGURE 7.33
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Example 7.11. Find the self-inductance of a toroidal coil with rectangular cross
section (inner radius a, outer radius b, height h), that carries a total of N turns.

Solution
The magnetic field inside the toroid is (Eq. 5.60)

B = μ0 N I

2πs
.

a
s
b

h

ds
Axis

FIGURE 7.34

The flux through a single turn (Fig. 7.34) is
∫

B · da = μ0 N I

2π
h

∫ b

a

1

s
ds = μ0 N I h

2π
ln

(
b

a

)
.

The total flux is N times this, so the self-inductance (Eq. 7.26) is

L = μ0 N 2h

2π
ln

(
b

a

)
. (7.28)

Inductance (like capacitance) is an intrinsically positive quantity. Lenz’s law,
which is enforced by the minus sign in Eq. 7.27, dictates that the emf is in such
a direction as to oppose any change in current. For this reason, it is called a
back emf. Whenever you try to alter the current in a wire, you must fight against
this back emf. Inductance plays somewhat the same role in electric circuits that
mass plays in mechanical systems: The greater L is, the harder it is to change
the current, just as the larger the mass, the harder it is to change an object’s
velocity.

Example 7.12. Suppose a current I is flowing around a loop, when someone
suddenly cuts the wire. The current drops “instantaneously” to zero. This gen-
erates a whopping back emf, for although I may be small, d I/dt is enormous.
(That’s why you sometimes draw a spark when you unplug an iron or toaster—
electromagnetic induction is desperately trying to keep the current going, even if
it has to jump the gap in the circuit.)

Nothing so dramatic occurs when you plug in a toaster or iron. In this case in-
duction opposes the sudden increase in current, prescribing instead a smooth and
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continuous buildup. Suppose, for instance, that a battery (which supplies a con-
stant emf E0) is connected to a circuit of resistance R and inductance L (Fig. 7.35).
What current flows?

R

L

ε0

FIGURE 7.35

Solution
The total emf in this circuit is E0 from the battery plus −L(d I/dt) from the in-
ductance. Ohm’s law, then, says17

E0 − L
d I

dt
= I R.

This is a first-order differential equation for I as a function of time. The general
solution, as you can show for yourself, is

I (t) = E0

R
+ ke−(R/L)t ,

where k is a constant to be determined by the initial conditions. In particular, if
you close the switch at time t = 0, so I (0) = 0, then k = −E0/R, and

I (t) = E0

R

[
1 − e−(R/L)t

]
. (7.29)

This function is plotted in Fig. 7.36. Had there been no inductance in the circuit,
the current would have jumped immediately to E0/R. In practice, every circuit
has some self-inductance, and the current approaches E0/R asymptotically. The
quantity τ ≡ L/R is the time constant; it tells you how long the current takes to
reach a substantial fraction (roughly two-thirds) of its final value.

L /R 2L /R 3L /R

I

t

E0/R

FIGURE 7.36

17Notice that −L(d I/dt) goes on the left side of the equation—it is part of the emf that establishes
the voltage across the resistor.
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Problem 7.22 A small loop of wire (radius a) is held a distance z above the center
of a large loop (radius b), as shown in Fig. 7.37. The planes of the two loops are
parallel, and perpendicular to the common axis.

(a) Suppose current I flows in the big loop. Find the flux through the little loop.
(The little loop is so small that you may consider the field of the big loop to be
essentially constant.)

(b) Suppose current I flows in the little loop. Find the flux through the big loop.
(The little loop is so small that you may treat it as a magnetic dipole.)

(c) Find the mutual inductances, and confirm that M12 = M21.

Problem 7.23 A square loop of wire, of side a, lies midway between two long wires,
3a apart, and in the same plane. (Actually, the long wires are sides of a large rectan-
gular loop, but the short ends are so far away that they can be neglected.) A clock-
wise current I in the square loop is gradually increasing: d I/dt = k (a constant).
Find the emf induced in the big loop. Which way will the induced current flow?

Problem 7.24 Find the self-inductance per unit length of a long solenoid, of radius
R, carrying n turns per unit length.

a

z

b

FIGURE 7.37

d

l

FIGURE 7.38

Problem 7.25 Try to compute the self-inductance of the “hairpin” loop shown in
Fig. 7.38. (Neglect the contribution from the ends; most of the flux comes from
the long straight section.) You’ll run into a snag that is characteristic of many self-
inductance calculations. To get a definite answer, assume the wire has a tiny radius ε,
and ignore any flux through the wire itself.

Problem 7.26 An alternating current I (t) = I0 cos(ωt) (amplitude 0.5 A, frequency
60 Hz) flows down a straight wire, which runs along the axis of a toroidal coil with
rectangular cross section (inner radius 1 cm, outer radius 2 cm, height 1 cm, 1000
turns). The coil is connected to a 500 � resistor.

(a) In the quasistatic approximation, what emf is induced in the toroid? Find the
current, IR(t), in the resistor.

(b) Calculate the back emf in the coil, due to the current IR(t). What is the ratio of
the amplitudes of this back emf and the “direct” emf in (a)?

Problem 7.27 A capacitor C is charged up to a voltage V and connected to an
inductor L , as shown schematically in Fig. 7.39. At time t = 0, the switch S is
closed. Find the current in the circuit as a function of time. How does your answer
change if a resistor R is included in series with C and L?
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CL

S

FIGURE 7.39

7.2.4 Energy in Magnetic Fields

It takes a certain amount of energy to start a current flowing in a circuit. I’m not
talking about the energy delivered to the resistors and converted into heat—that
is irretrievably lost, as far as the circuit is concerned, and can be large or small,
depending on how long you let the current run. What I am concerned with, rather,
is the work you must do against the back emf to get the current going. This is
a fixed amount, and it is recoverable: you get it back when the current is turned
off. In the meantime, it represents energy latent in the circuit; as we’ll see in a
moment, it can be regarded as energy stored in the magnetic field.

The work done on a unit charge, against the back emf, in one trip around the
circuit is −E (the minus sign records the fact that this is the work done by you
against the emf, not the work done by the emf). The amount of charge per unit
time passing down the wire is I . So the total work done per unit time is

dW

dt
= −E I = L I

d I

dt
.

If we start with zero current and build it up to a final value I , the work done
(integrating the last equation over time) is

W = 1

2
L I 2. (7.30)

It does not depend on how long we take to crank up the current, only on the
geometry of the loop (in the form of L) and the final current I .

There is a nicer way to write W , which has the advantage that it is readily
generalized to surface and volume currents. Remember that the flux � through
the loop is equal to L I (Eq. 7.26). On the other hand,

� =
∫

B · da =
∫

(∇ × A) · da =
∮

A · dl,

where the line integral is around the perimeter of the loop. Thus

L I =
∮

A · dl,
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and therefore

W = 1

2
I
∮

A · dl = 1

2

∮
(A · I) dl. (7.31)

In this form, the generalization to volume currents is obvious:

W = 1

2

∫
V
(A · J) dτ. (7.32)

But we can do even better, and express W entirely in terms of the magnetic
field: Ampère’s law, ∇ × B = μ0J, lets us eliminate J:

W = 1

2μ0

∫
A · (∇ × B) dτ. (7.33)

Integration by parts transfers the derivative from B to A; specifically, product rule
6 states that

∇ · (A × B) = B · (∇ × A) − A · (∇ × B),

so

A · (∇ × B) = B · B − ∇ · (A × B).

Consequently,

W = 1

2μ0

[∫
B2 dτ −

∫
∇ · (A × B) dτ

]

= 1

2μ0

[∫
V

B2 dτ −
∮

S
(A × B) · da

]
, (7.34)

where S is the surface bounding the volume V .
Now, the integration in Eq. 7.32 is to be taken over the entire volume occupied

by the current. But any region larger than this will do just as well, for J is zero
out there anyway. In Eq. 7.34, the larger the region we pick the greater is the
contribution from the volume integral, and therefore the smaller is that of the
surface integral (this makes sense: as the surface gets farther from the current,
both A and B decrease). In particular, if we agree to integrate over all space, then
the surface integral goes to zero, and we are left with

W = 1

2μ0

∫
all space

B2 dτ . (7.35)

In view of this result, we say the energy is “stored in the magnetic field,” in
the amount (B2/2μ0) per unit volume. This is a nice way to think of it, though
someone looking at Eq. 7.32 might prefer to say that the energy is stored in the
current distribution, in the amount 1

2 (A · J) per unit volume. The distinction is
one of bookkeeping; the important quantity is the total energy W , and we need
not worry about where (if anywhere) the energy is “located.”
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You might find it strange that it takes energy to set up a magnetic field—after
all, magnetic fields themselves do no work. The point is that producing a magnetic
field, where previously there was none, requires changing the field, and a chang-
ing B-field, according to Faraday, induces an electric field. The latter, of course,
can do work. In the beginning, there is no E, and at the end there is no E; but in
between, while B is building up, there is an E, and it is against this that the work
is done. (You see why I could not calculate the energy stored in a magnetostatic
field back in Chapter 5.) In the light of this, it is extraordinary how similar the
magnetic energy formulas are to their electrostatic counterparts:18

Welec = 1

2

∫
(Vρ) dτ = ε0

2

∫
E2 dτ, (2.43 and 2.45)

Wmag = 1

2

∫
(A · J) dτ = 1

2μ0

∫
B2 dτ. (7.32 and 7.35)

Example 7.13. A long coaxial cable carries current I (the current flows down the
surface of the inner cylinder, radius a, and back along the outer cylinder, radius
b) as shown in Fig. 7.40. Find the magnetic energy stored in a section of length l.

I

a
b

I

FIGURE 7.40

Solution
According to Ampère’s law, the field between the cylinders is

B = μ0 I

2πs
φ̂.

Elsewhere, the field is zero. Thus, the energy per unit volume is

1

2μ0

(
μ0 I

2πs

)2

= μ0 I 2

8π2s2
.

The energy in a cylindrical shell of length l, radius s, and thickness ds, then, is
(

μ0 I 2

8π2s2

)
2πls ds = μ0 I 2l

4π

(
ds

s

)
.

18For an illuminating confirmation of Eq. 7.35, using the method of Prob. 2.44, see T. H. Boyer,
Am. J. Phys. 69, 1 (2001).
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Integrating from a to b, we have:

W = μ0 I 2l

4π
ln

(
b

a

)
.

By the way, this suggests a very simple way to calculate the self-inductance of
the cable. According to Eq. 7.30, the energy can also be written as 1

2 L I 2. Com-
paring the two expressions,19

L = μ0l

2π
ln

(
b

a

)
.

This method of calculating self-inductance is especially useful when the current
is not confined to a single path, but spreads over some surface or volume, so that
different parts of the current enclose different amounts of flux. In such cases, it
can be very tricky to get the inductance directly from Eq. 7.26, and it is best to let
Eq. 7.30 define L .

Problem 7.28 Find the energy stored in a section of length l of a long solenoid
(radius R, current I , n turns per unit length), (a) using Eq. 7.30 (you found L in
Prob. 7.24); (b) using Eq. 7.31 (we worked out A in Ex. 5.12); (c) using Eq. 7.35;
(d) using Eq. 7.34 (take as your volume the cylindrical tube from radius a < R out
to radius b > R).

Problem 7.29 Calculate the energy stored in the toroidal coil of Ex. 7.11, by apply-
ing Eq. 7.35. Use the answer to check Eq. 7.28.

Problem 7.30 A long cable carries current in one direction uniformly distributed
over its (circular) cross section. The current returns along the surface (there is a
very thin insulating sheath separating the currents). Find the self-inductance per
unit length.

Problem 7.31 Suppose the circuit in Fig. 7.41 has been connected for a long time
when suddenly, at time t = 0, switch S is thrown from A to B, bypassing the battery.

R

L

S

ε0

A
B

FIGURE 7.41

19Notice the similarity to Eq. 7.28—in a sense, the rectangular toroid is a short coaxial cable, turned
on its side.
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(a) What is the current at any subsequent time t?

(b) What is the total energy delivered to the resistor?

(c) Show that this is equal to the energy originally stored in the inductor.

Problem 7.32 Two tiny wire loops, with areas a1 and a2, are situated a displacement
r apart (Fig. 7.42).

a2

a1

r

FIGURE 7.42

(a) Find their mutual inductance. [Hint: Treat them as magnetic dipoles, and use
Eq. 5.88.] Is your formula consistent with Eq. 7.24?

(b) Suppose a current I1 is flowing in loop 1, and we propose to turn on a current
I2 in loop 2. How much work must be done, against the mutually induced emf,
to keep the current I1 flowing in loop 1? In light of this result, comment on
Eq. 6.35.

Problem 7.33 An infinite cylinder of radius R carries a uniform surface charge σ .
We propose to set it spinning about its axis, at a final angular velocity ω f . How much
work will this take, per unit length? Do it two ways, and compare your answers:

(a) Find the magnetic field and the induced electric field (in the quasistatic approx-
imation), inside and outside the cylinder, in terms of ω, ω̇, and s (the distance
from the axis). Calculate the torque you must exert, and from that obtain the
work done per unit length (W = ∫

N dφ).

(b) Use Eq. 7.35 to determine the energy stored in the resulting magnetic field.

7.3 MAXWELL’S EQUATIONS

7.3.1 Electrodynamics Before Maxwell

So far, we have encountered the following laws, specifying the divergence and
curl of electric and magnetic fields:

(i) ∇ · E = 1

ε0
ρ (Gauss’s law),

(ii) ∇ · B = 0 (no name),

(iii) ∇ × E = −∂B
∂t

(Faraday’s law),

(iv) ∇ × B = μ0J (Ampère’s law).
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These equations represent the state of electromagnetic theory in the mid-nineteenth
century, when Maxwell began his work. They were not written in so compact a
form, in those days, but their physical content was familiar. Now, it happens that
there is a fatal inconsistency in these formulas. It has to do with the old rule that
divergence of curl is always zero. If you apply the divergence to number (iii),
everything works out:

∇ · (∇ × E) = ∇ ·
(

−∂B
∂t

)
= − ∂

∂t
(∇ · B).

The left side is zero because divergence of curl is zero; the right side is zero by
virtue of equation (ii). But when you do the same thing to number (iv), you get
into trouble:

∇ · (∇ × B) = μ0(∇ · J); (7.36)

the left side must be zero, but the right side, in general, is not. For steady currents,
the divergence of J is zero, but when we go beyond magnetostatics Ampère’s law
cannot be right.

There’s another way to see that Ampère’s law is bound to fail for nonsteady
currents. Suppose we’re in the process of charging up a capacitor (Fig. 7.43). In
integral form, Ampère’s law reads

∮
B · dl = μ0 Ienc.

I want to apply it to the Amperian loop shown in the diagram. How do I deter-
mine Ienc? Well, it’s the total current passing through the loop, or, more precisely,
the current piercing a surface that has the loop for its boundary. In this case, the
simplest surface lies in the plane of the loop—the wire punctures this surface, so
Ienc = I . Fine—but what if I draw instead the balloon-shaped surface in Fig. 7.43?
No current passes through this surface, and I conclude that Ienc = 0! We never
had this problem in magnetostatics because the conflict arises only when charge

Capacitor

Battery

Amperian loop

I

FIGURE 7.43
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is piling up somewhere (in this case, on the capacitor plates). But for nonsteady
currents (such as this one) “the current enclosed by the loop” is an ill-defined
notion; it depends entirely on what surface you use. (If this seems pedantic to
you—“obviously one should use the plane surface”—remember that the Ampe-
rian loop could be some contorted shape that doesn’t even lie in a plane.)

Of course, we had no right to expect Ampère’s law to hold outside of magne-
tostatics; after all, we derived it from the Biot-Savart law. However, in Maxwell’s
time there was no experimental reason to doubt that Ampère’s law was of wider
validity. The flaw was a purely theoretical one, and Maxwell fixed it by purely
theoretical arguments.

7.3.2 How Maxwell Fixed Ampère’s Law

The problem is on the right side of Eq. 7.36, which should be zero, but isn’t.
Applying the continuity equation (5.29) and Gauss’s law, the offending term can
be rewritten:

∇ · J = −∂ρ

∂t
= − ∂

∂t
(ε0∇ · E) = −∇ ·

(
ε0

∂E
∂t

)
.

If we were to combine ε0(∂E/∂t) with J, in Ampère’s law, it would be just right
to kill off the extra divergence:

∇ × B = μ0J + μ0ε0
∂E
∂t

. (7.37)

(Maxwell himself had other reasons for wanting to add this quantity to Ampère’s
law. To him, the rescue of the continuity equation was a happy dividend rather than
a primary motive. But today we recognize this argument as a far more compelling
one than Maxwell’s, which was based on a now-discredited model of the ether.)20

Such a modification changes nothing, as far as magnetostatics is concerned:
when E is constant, we still have ∇ × B = μ0J. In fact, Maxwell’s term is hard
to detect in ordinary electromagnetic experiments, where it must compete for at-
tention with J—that’s why Faraday and the others never discovered it in the lab-
oratory. However, it plays a crucial role in the propagation of electromagnetic
waves, as we’ll see in Chapter 9.

Apart from curing the defect in Ampère’s law, Maxwell’s term has a cer-
tain aesthetic appeal: Just as a changing magnetic field induces an electric field
(Faraday’s law), so21

A changing electric field induces a magnetic field.

20For the history of this subject, see A. M. Bork, Am. J. Phys. 31, 854 (1963).
21See footnote 8 (page 313) for commentary on the word “induce.” The same issue arises here: Should
a changing electric field be regarded as an independent source of magnetic field (along with current)?
In a proximate sense it does function as a source, but since the electric field itself was produced by
charges and currents, they alone are the “ultimate” sources of E and B. See S. E. Hill, Phys. Teach.
49, 343 (2011); for a contrary view, see C. Savage, Phys. Teach. 50, 226 (2012).
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Of course, theoretical convenience and aesthetic consistency are only suggestive—
there might, after all, be other ways to doctor up Ampère’s law. The real confir-
mation of Maxwell’s theory came in 1888 with Hertz’s experiments on electro-
magnetic waves.

Maxwell called his extra term the displacement current:

Jd ≡ ε0
∂E
∂t

. (7.38)

(It’s a misleading name; ε0(∂E/∂t) has nothing to do with current, except that it
adds to J in Ampère’s law.) Let’s see now how displacement current resolves the
paradox of the charging capacitor (Fig. 7.43). If the capacitor plates are very close
together (I didn’t draw them that way, but the calculation is simpler if you assume
this), then the electric field between them is

E = 1

ε0
σ = 1

ε0

Q

A
,

where Q is the charge on the plate and A is its area. Thus, between the plates

∂ E

∂t
= 1

ε0 A

d Q

dt
= 1

ε0 A
I.

Now, Eq. 7.37 reads, in integral form,

∮
B · dl = μ0 Ienc + μ0ε0

∫ (
∂E
∂t

)
· da. (7.39)

If we choose the flat surface, then E = 0 and Ienc = I . If, on the other hand, we
use the balloon-shaped surface, then Ienc = 0, but

∫
(∂E/∂t) · da = I/ε0. So we

get the same answer for either surface, though in the first case it comes from the
conduction current, and in the second from the displacement current.

Example 7.14. Imagine two concentric metal spherical shells (Fig. 7.44).

The inner one (radius a) carries a charge Q(t), and the outer one (radius b) an
opposite charge −Q(t). The space between them is filled with Ohmic material of
conductivity σ , so a radial current flows:

J = σE = σ
1

4πε0

Q

r2
r̂; I = −Q̇ =

∫
J · da = σ Q

ε0
.

This configuration is spherically symmetrical, so the magnetic field has to be zero
(the only direction it could possibly point is radial, and ∇ · B = 0 ⇒ ∮

B · da =
B(4πr2) = 0, so B = 0). What? I thought currents produce magnetic fields! Isn’t
that what Biot-Savart and Ampère taught us? How can there be a J with no
accompanying B?
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J
a

b

FIGURE 7.44

Solution
This is not a static configuration: Q, E, and J are all functions of time; Ampère
and Biot-Savart do not apply. The displacement current

Jd = ε0
∂E
∂t

= 1

4π

Q̇

r2
r̂ = −σ

Q

4πε0r2
r̂

exactly cancels the conduction current (in Eq. 7.37), and the magnetic field
(determined by ∇ · B = 0, ∇ × B = 0) is indeed zero.

Problem 7.34 A fat wire, radius a, carries a constant current I , uniformly dis-
tributed over its cross section. A narrow gap in the wire, of width w � a, forms
a parallel-plate capacitor, as shown in Fig. 7.45. Find the magnetic field in the gap,
at a distance s < a from the axis.

a
I I

+σ −σ

w

FIGURE 7.45

Problem 7.35 The preceding problem was an artificial model for the charging ca-
pacitor, designed to avoid complications associated with the current spreading out
over the surface of the plates. For a more realistic model, imagine thin wires that
connect to the centers of the plates (Fig. 7.46a). Again, the current I is constant,
the radius of the capacitor is a, and the separation of the plates is w � a. Assume
that the current flows out over the plates in such a way that the surface charge is
uniform, at any given time, and is zero at t = 0.

(a) Find the electric field between the plates, as a function of t .

(b) Find the displacement current through a circle of radius s in the plane mid-
way between the plates. Using this circle as your “Amperian loop,” and the flat
surface that spans it, find the magnetic field at a distance s from the axis.
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(c) Repeat part (b), but this time use the cylindrical surface in Fig. 7.46(b), which
is open at the right end and extends to the left through the plate and terminates
outside the capacitor. Notice that the displacement current through this surface
is zero, and there are two contributions to Ienc.22

Problem 7.36 Refer to Prob. 7.16, to which the correct answer was

E(s, t) = μ0 I0ω

2π
sin(ωt) ln

(a

s

)
ẑ.

(a) Find the displacement current density Jd .

(b) Integrate it to get the total displacement current,

Id =
∫

Jd · da.

(c) Compare Id and I . (What’s their ratio?) If the outer cylinder were, say, 2 mm in
diameter, how high would the frequency have to be, for Id to be 1% of I ? [This
problem is designed to indicate why Faraday never discovered displacement
currents, and why it is ordinarily safe to ignore them unless the frequency is
extremely high.]

7.3.3 Maxwell’s Equations

In the last section we put the finishing touches on Maxwell’s equations:

(i) ∇ · E = 1

ε0
ρ (Gauss’s law),

(ii) ∇ · B = 0 (no name),

(iii) ∇ × E = −∂B
∂t

(Faraday’s law),

(iv) ∇ × B = μ0J + μ0ε0
∂E
∂t

(Ampère’s law with

Maxwell’s correction).

(7.40)

22This problem raises an interesting quasi-philosophical question: If you measure B in the laboratory,
have you detected the effects of displacement current (as (b) would suggest), or merely confirmed the
effects of ordinary currents (as (c) implies)? See D. F. Bartlett, Am. J. Phys. 58, 1168 (1990).
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Together with the force law,

F = q(E + v × B), (7.41)

they summarize the entire theoretical content of classical electrodynamics23 (save
for some special properties of matter, which we encountered in Chapters 4 and 6).
Even the continuity equation,

∇ · J = −∂ρ

∂t
, (7.42)

which is the mathematical expression of conservation of charge, can be derived
from Maxwell’s equations by applying the divergence to number (iv).

I have written Maxwell’s equations in the traditional way, which emphasizes
that they specify the divergence and curl of E and B. In this form, they reinforce
the notion that electric fields can be produced either by charges (ρ) or by changing
magnetic fields (∂B/∂t), and magnetic fields can be produced either by currents
(J) or by changing electric fields (∂E/∂t). Actually, this is misleading, because
∂B/∂t and ∂E/∂t are themselves due to charges and currents. I think it is logically
preferable to write

(i) ∇ · E = 1

ε0
ρ, (iii) ∇ × E + ∂B

∂t
= 0,

(ii) ∇ · B = 0, (iv) ∇ × B − μ0ε0
∂E
∂t

= μ0J,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.43)

with the fields (E and B) on the left and the sources (ρ and J) on the right. This
notation emphasizes that all electromagnetic fields are ultimately attributable to
charges and currents. Maxwell’s equations tell you how charges produce fields;
reciprocally, the force law tells you how fields affect charges.

Problem 7.37 Suppose

E(r, t) = 1

4πε0

q

r 2
θ(vt − r)r̂; B(r, t) = 0

(The theta function is defined in Prob. 1.46b). Show that these fields satisfy all of
Maxwell’s equations, and determine ρ and J. Describe the physical situation that
gives rise to these fields.

7.3.4 Magnetic Charge

There is a pleasing symmetry to Maxwell’s equations; it is particularly striking in
free space, where ρ and J vanish:

∇ · E = 0, ∇ × E = −∂B
∂t

,

∇ · B = 0, ∇ × B = μ0ε0
∂E
∂t

.

⎫⎪⎪⎬
⎪⎪⎭

23Like any differential equations, Maxwell’s must be supplemented by suitable boundary conditions.
Because these are typically “obvious” from the context (e.g. E and B go to zero at large distances from
a localized charge distribution), it is easy to forget that they play an essential role.



7.3 Maxwell’s Equations 339

If you replace E by B and B by −μ0ε0E, the first pair of equations turns into the
second, and vice versa. This symmetry24 between E and B is spoiled, though, by
the charge term in Gauss’s law and the current term in Ampère’s law. You can’t
help wondering why the corresponding quantities are “missing” from ∇ · B = 0
and ∇ × E = −∂B/∂t . What if we had

(i) ∇ · E = 1

ε0
ρe, (iii) ∇ × E = −μ0Jm − ∂B

∂t
,

(ii) ∇ · B = μ0ρm, (iv) ∇ × B = μ0Je + μ0ε0
∂E
∂t

.

⎫⎪⎪⎬
⎪⎪⎭

(7.44)

Then ρm would represent the density of magnetic “charge,” and ρe the density of
electric charge; Jm would be the current of magnetic charge, and Je the current of
electric charge. Both charges would be conserved:

∇ · Jm = −∂ρm

∂t
, and ∇ · Je = −∂ρe

∂t
. (7.45)

The former follows by application of the divergence to (iii), the latter by taking
the divergence of (iv).

In a sense, Maxwell’s equations beg for magnetic charge to exist—it would fit
in so nicely. And yet, in spite of a diligent search, no one has ever found any.25

As far as we know, ρm is zero everywhere, and so is Jm ; B is not on equal foot-
ing with E: there exist stationary sources for E (electric charges) but none for B.
(This is reflected in the fact that magnetic multipole expansions have no monopole
term, and magnetic dipoles consist of current loops, not separated north and south
“poles.”) Apparently God just didn’t make any magnetic charge. (In quantum elec-
trodynamics, by the way, it’s a more than merely aesthetic shame that magnetic
charge does not seem to exist: Dirac showed that the existence of magnetic charge
would explain why electric charge is quantized. See Prob. 8.19.)

Problem 7.38 Assuming that “Coulomb’s law” for magnetic charges (qm) reads

F = μ0

4π

qm1 qm2

r2
r̂, (7.46)

work out the force law for a monopole qm moving with velocity v through electric
and magnetic fields E and B.26

Problem 7.39 Suppose a magnetic monopole qm passes through a resistanceless
loop of wire with self-inductance L . What current is induced in the loop?27

24Don’t be distracted by the pesky constants μ0 and ε0; these are present only because the SI system
measures E and B in different units, and would not occur, for instance, in the Gaussian system.
25For an extensive bibliography, see A. S. Goldhaber and W. P. Trower, Am. J. Phys. 58, 429 (1990).
26For interesting commentary, see W. Rindler, Am. J. Phys. 57, 993 (1989).
27This is one of the methods used to search for monopoles in the laboratory; see B. Cabrera, Phys.
Rev. Lett. 48, 1378 (1982).
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7.3.5 Maxwell’s Equations in Matter

Maxwell’s equations in the form 7.40 are complete and correct as they stand.
However, when you are working with materials that are subject to electric and
magnetic polarization there is a more convenient way to write them. For inside
polarized matter there will be accumulations of “bound” charge and current, over
which you exert no direct control. It would be nice to reformulate Maxwell’s
equations so as to make explicit reference only to the “free” charges and currents.

We have already learned, from the static case, that an electric polarization P
produces a bound charge density

ρb = −∇ · P (7.47)

(Eq. 4.12). Likewise, a magnetic polarization (or “magnetization”) M results in a
bound current

Jb = ∇ × M (7.48)

(Eq. 6.13). There’s just one new feature to consider in the nonstatic case: Any
change in the electric polarization involves a flow of (bound) charge (call it Jp),
which must be included in the total current. For suppose we examine a tiny chunk
of polarized material (Fig. 7.47). The polarization introduces a charge density
σb = P at one end and −σb at the other (Eq. 4.11). If P now increases a bit, the
charge on each end increases accordingly, giving a net current

d I = ∂σb

∂t
da⊥ = ∂ P

∂t
da⊥.

The current density, therefore, is

Jp = ∂P
∂t

. (7.49)

This polarization current has nothing to do with the bound current Jb. The
latter is associated with magnetization of the material and involves the spin and
orbital motion of electrons; Jp, by contrast, is the result of the linear motion of
charge when the electric polarization changes. If P points to the right, and is
increasing, then each plus charge moves a bit to the right and each minus charge
to the left; the cumulative effect is the polarization current Jp. We ought to check
that Eq. 7.49 is consistent with the continuity equation:

∇ · Jp = ∇ · ∂P
∂t

= ∂

∂t
(∇ · P) = −∂ρb

∂t
.

P
da⊥

−σb

+σb

FIGURE 7.47
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Yes: The continuity equation is satisfied; in fact, Jp is essential to ensure the
conservation of bound charge. (Incidentally, a changing magnetization does not
lead to any analogous accumulation of charge or current. The bound current
Jb = ∇ × M varies in response to changes in M, to be sure, but that’s about it.)

In view of all this, the total charge density can be separated into two parts:

ρ = ρ f + ρb = ρ f − ∇ · P, (7.50)

and the current density into three parts:

J = J f + Jb + Jp = J f + ∇ × M + ∂P
∂t

. (7.51)

Gauss’s law can now be written as

∇ · E = 1

ε0
(ρ f − ∇ · P),

or

∇ · D = ρ f , (7.52)

where, as in the static case,

D ≡ ε0E + P. (7.53)

Meanwhile, Ampère’s law (with Maxwell’s term) becomes

∇ × B = μ0

(
J f + ∇ × M + ∂P

∂t

)
+ μ0ε0

∂E
∂t

,

or

∇ × H = J f + ∂D
∂t

, (7.54)

where, as before,

H ≡ 1

μ0
B − M. (7.55)

Faraday’s law and ∇ · B = 0 are not affected by our separation of charge and
current into free and bound parts, since they do not involve ρ or J.

In terms of free charges and currents, then, Maxwell’s equations read

(i) ∇ · D = ρ f , (iii) ∇ × E = −∂B
∂t

,

(ii) ∇ · B = 0, (iv) ∇ × H = J f + ∂D
∂t

.

(7.56)

Some people regard these as the “true” Maxwell’s equations, but please under-
stand that they are in no way more “general” than Eq. 7.40; they simply reflect a
convenient division of charge and current into free and nonfree parts. And they
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have the disadvantage of hybrid notation, since they contain both E and D, both
B and H. They must be supplemented, therefore, by appropriate constitutive
relations, giving D and H in terms of E and B. These depend on the nature of
the material; for linear media

P = ε0χeE, and M = χmH, (7.57)

so

D = εE, and H = 1

μ
B, (7.58)

where ε ≡ ε0(1 + χe) and μ ≡ μ0(1 + χm). Incidentally, you’ll remember that
D is called the electric “displacement”; that’s why the second term in the
Ampère/Maxwell equation (iv) came to be called the displacement current.
In this context,

Jd ≡ ∂D
∂t

. (7.59)

Problem 7.40 Sea water at frequency ν = 4 × 108 Hz has permittivity ε = 81ε0,
permeability μ = μ0, and resistivity ρ = 0.23 � · m. What is the ratio of conduc-
tion current to displacement current? [Hint: Consider a parallel-plate capacitor im-
mersed in sea water and driven by a voltage V0 cos (2πνt).]

7.3.6 Boundary Conditions

In general, the fields E, B, D, and H will be discontinuous at a boundary between
two different media, or at a surface that carries a charge density σ or a current den-
sity K. The explicit form of these discontinuities can be deduced from Maxwell’s
equations (7.56), in their integral form

(i)
∮

S
D · da = Q fenc

(ii)
∮

S
B · da = 0

⎫⎪⎪⎬
⎪⎪⎭

over any closed surface S.

(iii)
∮

P
E · dl = − d

dt

∫
S

B · da

(iv)

∮
P

H · dl = I fenc + d

dt

∫
S

D · da

⎫⎪⎪⎬
⎪⎪⎭

for any surface S
bounded by the
closed loop P.

Applying (i) to a tiny, wafer-thin Gaussian pillbox extending just slightly into
the material on either side of the boundary (Fig. 7.48), we obtain:

D1 · a − D2 · a = σ f a.

(The positive direction for a is from 2 toward 1. The edge of the wafer con-
tributes nothing in the limit as the thickness goes to zero; nor does any volume
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FIGURE 7.48

charge density.) Thus, the component of D that is perpendicular to the interface is
discontinuous in the amount

D⊥
1 − D⊥

2 = σ f . (7.60)

Identical reasoning, applied to equation (ii), yields

B⊥
1 − B⊥

2 = 0. (7.61)

Turning to (iii), a very thin Amperian loop straddling the surface gives

E1 · l − E2 · l = − d

dt

∫
S

B · da.

But in the limit as the width of the loop goes to zero, the flux vanishes. (I have
already dropped the contribution of the two ends to

∮
E · dl, on the same grounds.)

Therefore,

E‖
1 − E‖

2 = 0. (7.62)

That is, the components of E parallel to the interface are continuous across the
boundary. By the same token, (iv) implies

H1 · l − H2 · l = I fenc ,

where I fenc is the free current passing through the Amperian loop. No volume
current density will contribute (in the limit of infinitesimal width), but a surface
current can. In fact, if n̂ is a unit vector perpendicular to the interface (pointing
from 2 toward 1), so that (n̂ × l) is normal to the Amperian loop (Fig. 7.49), then

I fenc = K f · (n̂ × l) = (K f × n̂) · l,
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and hence

H‖
1 − H‖

2 = K f × n̂. (7.63)

So the parallel components of H are discontinuous by an amount proportional to
the free surface current density.

Equations 7.60-63 are the general boundary conditions for electrodynamics. In
the case of linear media, they can be expressed in terms of E and B alone:

(i) ε1 E⊥
1 − ε2 E⊥

2 = σ f , (iii) E‖
1 − E‖

2 = 0,

(ii) B⊥
1 − B⊥

2 = 0, (iv)
1

μ1
B‖

1 − 1

μ2
B‖

2 = K f × n̂.

⎫⎪⎪⎬
⎪⎪⎭

(7.64)

In particular, if there is no free charge or free current at the interface, then

(i) ε1 E⊥
1 − ε2 E⊥

2 = 0, (iii) E‖
1 − E‖

2 = 0,

(ii) B⊥
1 − B⊥

2 = 0, (iv)
1

μ1
B‖

1 − 1

μ2
B‖

2 = 0.

(7.65)

As we shall see in Chapter 9, these equations are the basis for the theory of reflec-
tion and refraction.

More Problems on Chapter 7

Problem 7.41 Two long, straight copper pipes, each of radius a, are held a dis-!
tance 2d apart (see Fig. 7.50). One is at potential V0, the other at −V0. The space
surrounding the pipes is filled with weakly conducting material of conductivity σ .
Find the current per unit length that flows from one pipe to the other. [Hint: Refer
to Prob. 3.12.]
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2d–V0

a a

+V0

σ

FIGURE 7.50

Problem 7.42 A rare case in which the electrostatic field E for a circuit can actually!
be calculated is the following:28 Imagine an infinitely long cylindrical sheet, of
uniform resistivity and radius a. A slot (corresponding to the battery) is maintained
at ±V0/2, at φ = ±π , and a steady current flows over the surface, as indicated in
Fig. 7.51. According to Ohm’s law, then,

V (a, φ) = V0φ

2π
, (−π < φ < +π).

x

z

s

K

a
φ

+V0/2
−V0/2

FIGURE 7.51

(a) Use separation of variables in cylindrical coordinates to determine V (s, φ) in-
side and outside the cylinder. [Answer: (V0/π) tan−1[(s sin φ)/(a + s cos φ)],
(s < a); (V0/π) tan−1[(a sin φ)/(s + a cos φ)], (s > a)]

(b) Find the surface charge density on the cylinder. [Answer: (ε0V0/πa) tan(φ/2)]

Problem 7.43 The magnetic field outside a long straight wire carrying a steady
current I is

B = μ0

2π

I

s
φ̂.

The electric field inside the wire is uniform:

E = Iρ

πa2
ẑ,

28M. A. Heald, Am. J. Phys. 52, 522 (1984). See also J. A. Hernandes and A. K. T. Assis, Phys. Rev. E
68, 046611 (2003).
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where ρ is the resistivity and a is the radius (see Exs. 7.1 and 7.3). Question: What is
the electric field outside the wire?29 The answer depends on how you complete the
circuit. Suppose the current returns along a perfectly conducting grounded coax-
ial cylinder of radius b (Fig. 7.52). In the region a < s < b, the potential V (s, z)
satisfies Laplace’s equation, with the boundary conditions

(i) V (a, z) = − Iρz

πa2
; (ii) V (b, z) = 0.

z
a

b
I

I

FIGURE 7.52

This does not suffice to determine the answer—we still need to specify boundary
conditions at the two ends (though for a long wire it shouldn’t matter much). In the
literature, it is customary to sweep this ambiguity under the rug by simply stipulat-
ing that V (s, z) is proportional to z: V (s, z) = z f (s). On this assumption:

(a) Determine f (s).

(b) Find E(s, z).

(c) Calculate the surface charge density σ(z) on the wire.

[Answer: V = (−I zρ/πa2)[ln(s/b)/ ln(a/b)] This is a peculiar result, since Es and
σ(z) are not independent of z—as one would certainly expect for a truly infinite
wire.]

Problem 7.44 In a perfect conductor, the conductivity is infinite, so E = 0
(Eq. 7.3), and any net charge resides on the surface (just as it does for an imperfect
conductor, in electrostatics).

(a) Show that the magnetic field is constant (∂B/∂t = 0), inside a perfect
conductor.

(b) Show that the magnetic flux through a perfectly conducting loop is constant.

A superconductor is a perfect conductor with the additional property that
the (constant) B inside is in fact zero. (This “flux exclusion” is known as the
Meissner effect.30)

29This is a famous problem, first analyzed by Sommerfeld, and is known in its most recent incarna-
tion as Merzbacher’s puzzle. A. Sommerfeld, Electrodynamics, p. 125 (New York: Academic Press,
1952); E. Merzbacher, Am. J. Phys. 48, 178 (1980); further references in R. N. Varnay and L. H. Fisher,
Am. J. Phys. 52, 1097 (1984).
30The Meissner effect is sometimes referred to as “perfect diamagnetism,” in the sense that the field
inside is not merely reduced, but canceled entirely. However, the surface currents responsible for this
are free, not bound, so the actual mechanism is quite different.
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(c) Show that the current in a superconductor is confined to the surface.

(d) Superconductivity is lost above a certain critical temperature (Tc), which varies
from one material to another. Suppose you had a sphere (radius a) above its
critical temperature, and you held it in a uniform magnetic field B0ẑ while cool-
ing it below Tc. Find the induced surface current density K, as a function of the
polar angle θ .

Problem 7.45 A familiar demonstration of superconductivity (Prob. 7.44) is the lev-
itation of a magnet over a piece of superconducting material. This phenomenon can
be analyzed using the method of images.31 Treat the magnet as a perfect dipole m,
a height z above the origin (and constrained to point in the z direction), and pretend
that the superconductor occupies the entire half-space below the xy plane. Because
of the Meissner effect, B = 0 for z ≤ 0, and since B is divergenceless, the normal
(z) component is continuous, so Bz = 0 just above the surface. This boundary con-
dition is met by the image configuration in which an identical dipole is placed at
−z, as a stand-in for the superconductor; the two arrangements therefore produce
the same magnetic field in the region z > 0.

(a) Which way should the image dipole point (+z or −z)?

(b) Find the force on the magnet due to the induced currents in the superconductor
(which is to say, the force due to the image dipole). Set it equal to Mg (where
M is the mass of the magnet) to determine the height h at which the magnet will
“float.” [Hint: Refer to Prob. 6.3.]

(c) The induced current on the surface of the superconductor (the xy plane) can
be determined from the boundary condition on the tangential component of B
(Eq. 5.76): B = μ0(K × ẑ). Using the field you get from the image configura-
tion, show that

K = − 3mrh

2π(r 2 + h2)5/2
φ̂,

where r is the distance from the origin.

Problem 7.46 If a magnetic dipole levitating above an infinite superconducting!
plane (Prob. 7.45) is free to rotate, what orientation will it adopt, and how high
above the surface will it float?

Problem 7.47 A perfectly conducting spherical shell of radius a rotates about the
z axis with angular velocity ω, in a uniform magnetic field B = B0 ẑ. Calculate the
emf developed between the “north pole” and the equator. [Answer: 1

2 B0ωa2]

Problem 7.48 Refer to Prob. 7.11 (and use the result of Prob. 5.42): How long does!
is take a falling circular ring (radius a, mass m, resistance R) to cross the bottom of
the magnetic field B, at its (changing) terminal velocity?

31W. M. Saslow, Am. J. Phys. 59, 16 (1991).
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Problem 7.49

(a) Referring to Prob. 5.52(a) and Eq. 7.18, show that

E = −∂A
∂t

, (7.66)

for Faraday-induced electric fields. Check this result by taking the divergence
and curl of both sides.

(b) A spherical shell of radius R carries a uniform surface charge σ . It spins about
a fixed axis at an angular velocity ω(t) that changes slowly with time. Find the
electric field inside and outside the sphere. [Hint: There are two contributions
here: the Coulomb field due to the charge, and the Faraday field due to the
changing B. Refer to Ex. 5.11.]

Problem 7.50 Electrons undergoing cyclotron motion can be sped up by increasing
the magnetic field; the accompanying electric field will impart tangential acceler-
ation. This is the principle of the betatron. One would like to keep the radius of
the orbit constant during the process. Show that this can be achieved by designing
a magnet such that the average field over the area of the orbit is twice the field at
the circumference (Fig. 7.53). Assume the electrons start from rest in zero field,
and that the apparatus is symmetric about the center of the orbit. (Assume also that
the electron velocity remains well below the speed of light, so that nonrelativis-
tic mechanics applies.) [Hint: Differentiate Eq. 5.3 with respect to time, and use
F = ma = q E .]

Electron
orbit

B

s

FIGURE 7.53
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v

FIGURE 7.54

Problem 7.51 An infinite wire carrying a constant current I in the ẑ direction is
moving in the y direction at a constant speed v. Find the electric field, in the qua-
sistatic approximation, at the instant the wire coincides with the z axis (Fig. 7.54).
[Answer: −(μ0 Iv/2πs) sin φ ẑ]

Problem 7.52 An atomic electron (charge q) circles about the nucleus (charge Q)
in an orbit of radius r ; the centripetal acceleration is provided, of course, by the
Coulomb attraction of opposite charges. Now a small magnetic field d B is slowly
turned on, perpendicular to the plane of the orbit. Show that the increase in kinetic
energy, dT , imparted by the induced electric field, is just right to sustain circular
motion at the same radius r. (That’s why, in my discussion of diamagnetism,
I assumed the radius is fixed. See Sect. 6.1.3 and the references cited there.)
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Problem 7.53 The current in a long solenoid is increasing linearly with time, so the
flux is proportional to t : � = αt . Two voltmeters are connected to diametrically op-
posite points (A and B), together with resistors (R1 and R2), as shown in Fig. 7.55.
What is the reading on each voltmeter? Assume that these are ideal voltmeters
that draw negligible current (they have huge internal resistance), and that a volt-
meter registers − ∫ b

a E · dl between the terminals and through the meter. [Answer:
V1 = αR1/(R1 + R2); V2 = −αR2/(R1 + R2). Notice that V1 = V2, even though
they are connected to the same points!32]

QP
90°

r

V

FIGURE 7.56

Problem 7.54 A circular wire loop (radius r , resistance R) encloses a region of uni-
form magnetic field, B, perpendicular to its plane. The field (occupying the shaded
region in Fig. 7.56) increases linearly with time (B = αt). An ideal voltmeter (infi-
nite internal resistance) is connected between points P and Q.

(a) What is the current in the loop?

(b) What does the voltmeter read? [Answer: αr 2/2]

Problem 7.55 In the discussion of motional emf (Sect. 7.1.3) I assumed that the
wire loop (Fig. 7.10) has a resistance R; the current generated is then I = vBh/R.
But what if the wire is made out of perfectly conducting material, so that R is zero?
In that case, the current is limited only by the back emf associated with the self-
inductance L of the loop (which would ordinarily be negligible in comparison with
I R). Show that in this régime the loop (mass m) executes simple harmonic motion,
and find its frequency.33 [Answer: ω = Bh/

√
mL]

32R. H. Romer, Am. J. Phys. 50, 1089 (1982). See also H. W. Nicholson, Am. J. Phys. 73, 1194 (2005);
B. M. McGuyer, Am. J. Phys. 80, 101 (2012).
33For a collection of related problems, see W. M. Saslow, Am. J. Phys. 55, 986 (1987), and R. H.
Romer, Eur. J. Phys. 11, 103 (1990).
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Problem 7.56

(a) Use the Neumann formula (Eq. 7.23) to calculate the mutual inductance of the
configuration in Fig. 7.37, assuming a is very small (a � b, a � z). Compare
your answer to Prob. 7.22.

(b) For the general case (not assuming a is small), show that

M = μ0πβ

2

√
abβ

(
1 + 15

8
β2 + . . .

)
,

where

β ≡ ab

z2 + a2 + b2
.

Primary
(N1 turns)

Secondary
(N2 turns)

FIGURE 7.57

Problem 7.57 Two coils are wrapped around a cylindrical form in such a way that
the same flux passes through every turn of both coils. (In practice this is achieved by
inserting an iron core through the cylinder; this has the effect of concentrating the
flux.) The primary coil has N1 turns and the secondary has N2 (Fig. 7.57). If the
current I in the primary is changing, show that the emf in the secondary is given by

E2

E1
= N2

N1
, (7.67)

where E1 is the (back) emf of the primary. [This is a primitive transformer—a
device for raising or lowering the emf of an alternating current source. By choosing
the appropriate number of turns, any desired secondary emf can be obtained. If you
think this violates the conservation of energy, study Prob. 7.58.]

Problem 7.58 A transformer (Prob. 7.57) takes an input AC voltage of amplitude
V1, and delivers an output voltage of amplitude V2, which is determined by the turns
ratio (V2/V1 = N2/N1). If N2 > N1, the output voltage is greater than the input
voltage. Why doesn’t this violate conservation of energy? Answer: Power is the
product of voltage and current; if the voltage goes up, the current must come down.
The purpose of this problem is to see exactly how this works out, in a simplified
model.
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(a) In an ideal transformer, the same flux passes through all turns of the primary
and of the secondary. Show that in this case M2 = L1 L2, where M is the mutual
inductance of the coils, and L1, L2 are their individual self-inductances.

(b) Suppose the primary is driven with AC voltage Vin = V1 cos (ωt), and the sec-
ondary is connected to a resistor, R. Show that the two currents satisfy the
relations

L1
d I1

dt
+ M

d I2

dt
= V1 cos (ωt); L2

d I2

dt
+ M

d I1

dt
= −I2 R.

(c) Using the result in (a), solve these equations for I1(t) and I2(t). (Assume I1 has
no DC component.)

(d) Show that the output voltage (Vout = I2 R) divided by the input voltage (Vin) is
equal to the turns ratio: Vout/Vin = N2/N1.

(e) Calculate the input power (Pin = Vin I1) and the output power (Pout = Vout I2),
and show that their averages over a full cycle are equal.

Problem 7.59 An infinite wire runs along the z axis; it carries a current I (z) that is
a function of z (but not of t), and a charge density λ(t) that is a function of t (but
not of z).

(a) By examining the charge flowing into a segment dz in a time dt , show that
dλ/dt = −d I/dz. If we stipulate that λ(0) = 0 and I (0) = 0, show that
λ(t) = kt, I (z) = −kz, where k is a constant.

(b) Assume for a moment that the process is quasistatic, so the fields are given
by Eqs. 2.9 and 5.38. Show that these are in fact the exact fields, by confirm-
ing that all four of Maxwell’s equations are satisfied. (First do it in differential
form, for the region s > 0, then in integral form for the appropriate Gaussian
cylinder/Amperian loop straddling the axis.)

Problem 7.60 Suppose J(r) is constant in time but ρ(r, t) is not—conditions that
might prevail, for instance, during the charging of a capacitor.

(a) Show that the charge density at any particular point is a linear function of time:

ρ(r, t) = ρ(r, 0) + ρ̇(r, 0)t,

where ρ̇(r, 0) is the time derivative of ρ at t = 0. [Hint: Use the continuity
equation.]

This is not an electrostatic or magnetostatic configuration;34 nevertheless, rather
surprisingly, both Coulomb’s law (Eq. 2.8) and the Biot-Savart law (Eq. 5.42)
hold, as you can confirm by showing that they satisfy Maxwell’s equations. In
particular:

34Some authors would regard this as magnetostatic, since B is independent of t . For them, the Biot-
Savart law is a general rule of magnetostatics, but ∇ · J = 0 and ∇ × B = μ0J apply only under the
additional assumption that ρ is constant. In such a formulation, Maxwell’s displacement term can
(in this very special case) be derived from the Biot-Savart law, by the method of part (b). See D. F.
Bartlett, Am. J. Phys. 58, 1168 (1990); D. J. Griffiths and M. A. Heald, Am. J. Phys. 59, 111 (1991).



352 Chapter 7 Electrodynamics

(b) Show that

B(r) = μ0

4π

∫
J(r′) × r̂
r2

dτ ′

obeys Ampère’s law with Maxwell’s displacement current term.

Problem 7.61 The magnetic field of an infinite straight wire carrying a steady cur-
rent I can be obtained from the displacement current term in the Ampère/Maxwell
law, as follows: Picture the current as consisting of a uniform line charge λ mov-
ing along the z axis at speed v (so that I = λv), with a tiny gap of length ε, which
reaches the origin at time t = 0. In the next instant (up to t = ε/v) there is no real
current passing through a circular Amperian loop in the xy plane, but there is a
displacement current, due to the “missing” charge in the gap.

(a) Use Coulomb’s law to calculate the z component of the electric field, for points
in the xy plane a distance s from the origin, due to a segment of wire with
uniform density −λ extending from z1 = vt − ε to z2 = vt .

(b) Determine the flux of this electric field through a circle of radius a in the xy
plane.

(c) Find the displacement current through this circle. Show that Id is equal to I , in
the limit as the gap width (ε) goes to zero.35

Problem 7.62 A certain transmission line is constructed from two thin metal “rib-
bons,” of width w, a very small distance h � w apart. The current travels down
one strip and back along the other. In each case, it spreads out uniformly over the
surface of the ribbon.

(a) Find the capacitance per unit length, C.

(b) Find the inductance per unit length, L.

(c) What is the product LC, numerically? [L and C will, of course, vary from one
kind of transmission line to another, but their product is a universal constant—
check, for example, the cable in Ex. 7.13—provided the space between the con-
ductors is a vacuum. In the theory of transmission lines, this product is related
to the speed with which a pulse propagates down the line: v = 1/

√LC.]

(d) If the strips are insulated from one another by a nonconducting material of per-
mittivity ε and permeability μ, what then is the product LC? What is the propa-
gation speed? [Hint: see Ex. 4.6; by what factor does L change when an inductor
is immersed in linear material of permeability μ?]

Problem 7.63 Prove Alfven’s theorem: In a perfectly conducting fluid (say, a gas
of free electrons), the magnetic flux through any closed loop moving with the fluid
is constant in time. (The magnetic field lines are, as it were, “frozen” into the fluid.)

(a) Use Ohm’s law, in the form of Eq. 7.2, together with Faraday’s law, to prove
that if σ = ∞ and J is finite, then

∂B
∂t

= ∇ × (v × B).

35For a slightly different approach to the same problem, see W. K. Terry, Am. J. Phys. 50, 742 (1982).
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S′

P

R P ′

vdtS

FIGURE 7.58

(b) Let S be the surface bounded by the loop (P) at time t , and S ′ a surface bounded
by the loop in its new position (P ′) at time t + dt (see Fig. 7.58). The change
in flux is

d� =
∫
S ′

B(t + dt) · da −
∫
S

B(t) · da.

Use ∇ · B = 0 to show that∫
S ′

B(t + dt) · da +
∫
R

B(t + dt) · da =
∫
S

B(t + dt) · da

(where R is the “ribbon” joining P and P ′), and hence that

d� = dt
∫
S

∂B
∂t

· da −
∫
R

B(t + dt) · da

(for infinitesimal dt). Use the method of Sect. 7.1.3 to rewrite the second inte-
gral as

dt
∮
P

(B × v) · dl,

and invoke Stokes’ theorem to conclude that

d�

dt
=

∫
S

(
∂B
∂t

− ∇ × (v × B)

)
· da.

Together with the result in (a), this proves the theorem.

Problem 7.64

(a) Show that Maxwell’s equations with magnetic charge (Eq. 7.44) are invariant
under the duality transformation

E′ = E cos α + cB sin α,

cB′ = cB cos α − E sin α,

cq ′
e = cqe cos α + qm sin α,

q ′
m = qm cos α − cqe sin α,

⎫⎪⎪⎬
⎪⎪⎭

(7.68)

where c ≡ 1/
√

ε0μ0 and α is an arbitrary rotation angle in “E/B-space.” Charge
and current densities transform in the same way as qe and qm . [This means, in
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particular, that if you know the fields produced by a configuration of electric
charge, you can immediately (using α = 90◦) write down the fields produced
by the corresponding arrangement of magnetic charge.]

(b) Show that the force law (Prob. 7.38)

F = qe(E + v × B) + qm

(
B − 1

c2
v × E

)
(7.69)

is also invariant under the duality transformation.



Intermission

All of our cards are now on the table, and in a sense my job is done. In the
first seven chapters we assembled electrodynamics piece by piece, and now, with
Maxwell’s equations in their final form, the theory is complete. There are no
more laws to be learned, no further generalizations to be considered, and (with
perhaps one exception) no lurking inconsistencies to be resolved. If yours is a
one-semester course, this would be a reasonable place to stop.

But in another sense we have just arrived at the starting point. We are at last
in possession of a full deck—it’s time to deal. This is the fun part, in which one
comes to appreciate the extraordinary power and richness of electrodynamics. In
a full-year course there should be plenty of time to cover the remaining chapters,
and perhaps to supplement them with a unit on plasma physics, say, or AC circuit
theory, or even a little general relativity. But if you have room for only one topic,
I’d recommend Chapter 9, on Electromagnetic Waves (you’ll probably want to
skim Chapter 8 as preparation). This is the segue to Optics, and is historically the
most important application of Maxwell’s theory.
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C H A P T E R

8 Conservation Laws

8.1 CHARGE AND ENERGY

8.1.1 The Continuity Equation

In this chapter we study conservation of energy, momentum, and angular momen-
tum, in electrodynamics. But I want to begin by reviewing the conservation of
charge, because it is the paradigm for all conservation laws. What precisely does
conservation of charge tell us? That the total charge in the universe is constant?
Well, sure—that’s global conservation of charge. But local conservation of charge
is a much stronger statement: If the charge in some region changes, then exactly
that amount of charge must have passed in or out through the surface. The tiger
can’t simply rematerialize outside the cage; if it got from inside to outside it must
have slipped through a hole in the fence.

Formally, the charge in a volume V is

Q(t) =
∫

V
ρ(r, t) dτ, (8.1)

and the current flowing out through the boundary S is
∮
S J · da, so local conser-

vation of charge says

d Q

dt
= −

∮
S

J · da. (8.2)

Using Eq. 8.1 to rewrite the left side, and invoking the divergence theorem on the
right, we have

∫
V

∂ρ

∂t
dτ = −

∫
V

∇ · J dτ, (8.3)

and since this is true for any volume, it follows that

∂ρ

∂t
= −∇ · J. (8.4)

This is the continuity equation—the precise mathematical statement of lo-
cal conservation of charge. It can be derived from Maxwell’s equations—
conservation of charge is not an independent assumption; it is built into the laws

356
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of electrodynamics. It serves as a constraint on the sources (ρ and J). They can’t
be just any old functions—they have to respect conservation of charge.1

The purpose of this chapter is to develop the corresponding equations for local
conservation of energy and momentum. In the process (and perhaps more impor-
tant) we will learn how to express the energy density and the momentum density
(the analogs to ρ), as well as the energy “current” and the momentum “current”
(analogous to J).

8.1.2 Poynting’s Theorem

In Chapter 2, we found that the work necessary to assemble a static charge distri-
bution (against the Coulomb repulsion of like charges) is (Eq. 2.45)

We = ε0

2

∫
E2 dτ,

where E is the resulting electric field. Likewise, the work required to get currents
going (against the back emf) is (Eq. 7.35)

Wm = 1

2μ0

∫
B2 dτ,

where B is the resulting magnetic field. This suggests that the total energy stored
in electromagnetic fields, per unit volume, is

u = 1

2

(
ε0 E2 + 1

μ0
B2

)
. (8.5)

In this section I will confirm Eq. 8.5, and develop the energy conservation law for
electrodynamics.

Suppose we have some charge and current configuration which, at time t , pro-
duces fields E and B. In the next instant, dt , the charges move around a bit.
Question: How much work, dW , is done by the electromagnetic forces acting
on these charges, in the interval dt? According to the Lorentz force law, the work
done on a charge q is

F · dl = q(E + v × B) · v dt = qE · v dt.

In terms of the charge and current densities, q → ρdτ and ρv → J,2 so the rate
at which work is done on all the charges in a volume V is

dW

dt
=

∫
V
(E · J) dτ. (8.6)

1The continuity equation is the only such constraint. Any functions ρ(r, t) and J(r, t) consistent
with Eq. 8.4 constitute possible charge and current densities, in the sense of admitting solutions to
Maxwell’s equations.
2This is a slippery equation: after all, if charges of both signs are present, the net charge density can
be zero even when the current is not—in fact, this is the case for ordinary current-carrying wires. We
should really treat the positive and negative charges separately, and combine the two to get Eq. 8.6,
with J = ρ+v+ + ρ−v−.
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Evidently E · J is the work done per unit time, per unit volume—which is to
say, the power delivered per unit volume. We can express this quantity in terms of
the fields alone, using the Ampère-Maxwell law to eliminate J:

E · J = 1

μ0
E · (∇ × B) − ε0E · ∂E

∂t
.

From product rule 6,

∇ · (E × B) = B · (∇ × E) − E · (∇ × B).

Invoking Faraday’s law (∇ × E = −∂B/∂t), it follows that

E · (∇ × B) = −B · ∂B
∂t

− ∇ · (E × B).

Meanwhile,

B · ∂B
∂t

= 1

2

∂

∂t
(B2), and E · ∂E

∂t
= 1

2

∂

∂t
(E2), (8.7)

so

E · J = −1

2

∂

∂t

(
ε0 E2 + 1

μ0
B2

)
− 1

μ0
∇ · (E × B). (8.8)

Putting this into Eq. 8.6, and applying the divergence theorem to the second
term, we have

dW

dt
= − d

dt

∫
V

1

2

(
ε0 E2 + 1

μ0
B2

)
dτ − 1

μ0

∮
S
(E × B) · da, (8.9)

where S is the surface bounding V . This is Poynting’s theorem; it is the “work-
energy theorem” of electrodynamics. The first integral on the right is the total
energy stored in the fields,

∫
u dτ (Eq. 8.5). The second term evidently represents

the rate at which energy is transported out of V , across its boundary surface, by the
electromagnetic fields. Poynting’s theorem says, then, that the work done on the
charges by the electromagnetic force is equal to the decrease in energy remaining
in the fields, less the energy that flowed out through the surface.

The energy per unit time, per unit area, transported by the fields is called the
Poynting vector:

S ≡ 1

μ0
(E × B). (8.10)

Specifically, S · da is the energy per unit time crossing the infinitesimal sur-
face da—the energy flux (so S is the energy flux density).3 We will see many

3If you’re very fastidious, you’ll notice a small gap in the logic here: We know from Eq. 8.9 that∮
S · da is the total power passing through a closed surface, but this does not prove that

∫
S · da is

the power passing through any open surface (there could be an extra term that integrates to zero over
all closed surfaces). This is, however, the obvious and natural interpretation; as always, the precise
location of energy is not really determined in electrodynamics (see Sect. 2.4.4).
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applications of the Poynting vector in Chapters 9 and 11, but for the moment I am
mainly interested in using it to express Poynting’s theorem more compactly:

dW

dt
= − d

dt

∫
V

u dτ −
∮

S
S · da. (8.11)

What if no work is done on the charges in V—what if, for example, we are in
a region of empty space, where there is no charge? In that case dW/dt = 0, so

∫
∂u

∂t
dτ = −

∮
S · da = −

∫
(∇ · S) dτ,

and hence
∂u

∂t
= −∇ · S. (8.12)

This is the “continuity equation” for energy—u (energy density) plays the role of
ρ (charge density), and S takes the part of J (current density). It expresses local
conservation of electromagnetic energy.

In general, though, electromagnetic energy by itself is not conserved (nor is
the energy of the charges). Of course not! The fields do work on the charges, and
the charges create fields—energy is tossed back and forth between them. In the
overall energy economy, you must include the contributions of both the matter
and the fields.

Example 8.1. When current flows down a wire, work is done, which shows up
as Joule heating of the wire (Eq. 7.7). Though there are certainly easier ways to
do it, the energy per unit time delivered to the wire can be calculated using the
Poynting vector. Assuming it’s uniform, the electric field parallel to the wire is

E = V

L
,

where V is the potential difference between the ends and L is the length of the
wire (Fig. 8.1). The magnetic field is “circumferential”; at the surface (radius a)
it has the value

B = μ0 I

2πa
.

L

a S
B

E

I

FIGURE 8.1
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Accordingly, the magnitude of the Poynting vector is

S = 1

μ0

V

L

μ0 I

2πa
= V I

2πaL
,

and it points radially inward. The energy per unit time passing in through the
surface of the wire is therefore∫

S · da = S(2πaL) = V I,

which is exactly what we concluded, on much more direct grounds, in Sect. 7.1.1.4

Problem 8.1 Calculate the power (energy per unit time) transported down the
cables of Ex. 7.13 and Prob. 7.62, assuming the two conductors are held at potential
difference V , and carry current I (down one and back up the other).

Problem 8.2 Consider the charging capacitor in Prob. 7.34.

(a) Find the electric and magnetic fields in the gap, as functions of the distance s
from the axis and the time t . (Assume the charge is zero at t = 0.)

(b) Find the energy density uem and the Poynting vector S in the gap. Note espe-
cially the direction of S. Check that Eq. 8.12 is satisfied.

(c) Determine the total energy in the gap, as a function of time. Calculate the total
power flowing into the gap, by integrating the Poynting vector over the appro-
priate surface. Check that the power input is equal to the rate of increase of
energy in the gap (Eq. 8.9—in this case W = 0, because there is no charge in
the gap). [If you’re worried about the fringing fields, do it for a volume of radius
b < a well inside the gap.]

8.2 MOMENTUM

8.2.1 Newton’s Third Law in Electrodynamics

Imagine a point charge q traveling in along the x axis at a constant speed v.
Because it is moving, its electric field is not given by Coulomb’s law; never-
theless, E still points radially outward from the instantaneous position of the
charge (Fig. 8.2a), as we’ll see in Chapter 10. Since, moreover, a moving point
charge does not constitute a steady current, its magnetic field is not given by the
Biot-Savart law. Nevertheless, it’s a fact that B still circles around the axis in a
manner suggested by the right-hand rule (Fig. 8.2b); again, the proof will come in
Chapter 10.

4What about energy flow down the wire? For a discussion, see M. K. Harbola, Am. J. Phys. 78, 1203
(2010). For a more sophisticated geometry, see B. S. Davis and L. Kaplan, Am. J. Phys. 79, 1155
(2011).
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Now suppose this charge encounters an identical one, proceeding in at the same
speed along the y axis. Of course, the electromagnetic force between them would
tend to drive them off the axes, but let’s assume that they’re mounted on tracks,
or something, so they’re obliged to maintain the same direction and the same
speed (Fig. 8.3). The electric force between them is repulsive, but how about the
magnetic force? Well, the magnetic field of q1 points into the page (at the position
of q2), so the magnetic force on q2 is toward the right, whereas the magnetic
field of q2 is out of the page (at the position of q1), and the magnetic force on
q1 is upward. The net electromagnetic force of q1 on q2 is equal but not opposite
to the force of q2 on q1, in violation of Newton’s third law. In electrostatics and
magnetostatics the third law holds, but in electrodynamics it does not.

Well, that’s an interesting curiosity, but then, how often does one actually use
the third law, in practice? Answer: All the time! For the proof of conservation of
momentum rests on the cancellation of internal forces, which follows from the
third law. When you tamper with the third law, you are placing conservation of
momentum in jeopardy, and there is hardly any principle in physics more sacred
than that.

Momentum conservation is rescued, in electrodynamics, by the realization
that the fields themselves carry momentum. This is not so surprising when you

x

y

z

B1

q1

q2 Fm

Fe

v2

Fm

Fe
B2

v1

FIGURE 8.3
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consider that we have already attributed energy to the fields. Whatever momen-
tum is lost to the particles is gained by the fields. Only when the field momentum
is added to the mechanical momentum is momentum conservation restored.

8.2.2 Maxwell’s Stress Tensor

Let’s calculate the total electromagnetic force on the charges in volume V:

F =
∫

V
(E + v × B)ρ dτ =

∫
V
(ρE + J × B) dτ. (8.13)

The force per unit volume is

f = ρE + J × B. (8.14)

As before, I propose to express this in terms of fields alone, eliminating ρ and
J by using Maxwell’s equations (i) and (iv):

f = ε0(∇ · E)E +
(

1

μ0
∇ × B − ε0

∂E
∂t

)
× B.

Now

∂

∂t
(E × B) =

(
∂E
∂t

× B
)

+
(

E × ∂B
∂t

)
,

and Faraday’s law says

∂B
∂t

= −∇ × E,

so

∂E
∂t

× B = ∂

∂t
(E × B) + E × (∇ × E).

Thus

f = ε0 [(∇ · E)E − E × (∇ × E)] − 1

μ0
[B × (∇ × B)] − ε0

∂

∂t
(E × B).

(8.15)

Just to make things look more symmetrical, let’s throw in a term (∇ · B)B;
since ∇ · B = 0, this costs us nothing. Meanwhile, product rule 4 says

∇(E2) = 2(E · ∇)E + 2E × (∇ × E),

so

E × (∇ × E) = 1

2
∇(E2) − (E · ∇)E,



8.2 Momentum 363

and the same goes for B. Therefore,

f = ε0 [(∇ · E)E + (E · ∇)E] + 1

μ0
[(∇ · B)B + (B · ∇)B]

−1

2
∇

(
ε0 E2 + 1

μ0
B2

)
− ε0

∂

∂t
(E × B).

(8.16)

Ugly! But it can be simplified by introducing the Maxwell stress tensor,

Ti j ≡ ε0

(
Ei E j − 1

2
δi j E2

)
+ 1

μ0

(
Bi B j − 1

2
δi j B2

)
. (8.17)

The indices i and j refer to the coordinates x, y, and z, so the stress tensor has a
total of nine components (Txx , Tyy, Txz, Tyx , and so on). The Kronecker delta,
δi j , is 1 if the indices are the same (δxx = δyy = δzz = 1) and zero otherwise
(δxy = δxz = δyz = 0). Thus

Txx = 1

2
ε0

(
E2

x − E2
y − E2

z

) + 1

2μ0

(
B2

x − B2
y − B2

z

)
,

Txy = ε0(Ex Ey) + 1

μ0
(Bx By),

and so on.
Because it carries two indices, where a vector has only one, Ti j is sometimes

written with a double arrow:
↔
T . One can form the dot product of

↔
T with a vector

a, in two ways—on the left, and on the right:

(
a · ↔

T
)

j
=

∑
i=x,y,z

ai Ti j ,
(↔

T · a
)

j
=

∑
i=x,y,z

Tji ai . (8.18)

The resulting object, which has one remaining index, is itself a vector. In particu-
lar, the divergence of

↔
T has as its j th component

(
∇ · ↔

T
)

j
= ε0

[
(∇ · E)E j + (E · ∇)E j − 1

2
∇j E2

]

+ 1

μ0

[
(∇ · B)B j + (B · ∇)B j − 1

2
∇j B2

]
.

Thus the force per unit volume (Eq. 8.16) can be written in the much tidier form

f = ∇ · ↔
T − ε0μ0

∂S
∂t

, (8.19)

where S is the Poynting vector (Eq. 8.10).
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The total electromagnetic force on the charges in V (Eq. 8.13) is

F =
∮

S
↔
T · da − ε0μ0

d

dt

∫
V

S dτ. (8.20)

(I used the divergence theorem to convert the first term to a surface integral.) In
the static case the second term drops out, and the electromagnetic force on the
charge configuration can be expressed entirely in terms of the stress tensor at the
boundary:

F =
∮

S
↔
T · da (static). (8.21)

Physically,
↔
T is the force per unit area (or stress) acting on the surface. More

precisely, Ti j is the force (per unit area) in the i th direction acting on an ele-
ment of surface oriented in the j th direction—“diagonal” elements (Txx , Tyy, Tzz)
represent pressures, and “off-diagonal” elements (Txy, Txz, etc.) are shears.

Example 8.2. Determine the net force on the “northern” hemisphere of a uni-
formly charged solid sphere of radius R and charge Q (the same as Prob. 2.47,
only this time we’ll use the Maxwell stress tensor and Eq. 8.21).

y

x

z

Disk

Bowl

FIGURE 8.4

Solution
The boundary surface consists of two parts—a hemispherical “bowl” at radius R,
and a circular disk at θ = π/2 (Fig. 8.4). For the bowl,

da = R2 sin θ dθ dφ r̂

and

E = 1

4πε0

Q

R2
r̂.

In Cartesian components,

r̂ = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ,
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so

Tzx = ε0 Ez Ex = ε0

(
Q

4πε0 R2

)2

sin θ cos θ cos φ,

Tzy = ε0 Ez Ey = ε0

(
Q

4πε0 R2

)2

sin θ cos θ sin φ,

Tzz = ε0

2

(
E2

z − E2
x − E2

y

) = ε0

2

(
Q

4πε0 R2

)2

(cos2 θ − sin2 θ). (8.22)

The net force is obviously in the z-direction, so it suffices to calculate

(↔
T · da

)
z
= Tzx dax + Tzy day + Tzz daz = ε0

2

(
Q

4πε0 R

)2

sin θ cos θ dθ dφ.

The force on the “bowl” is therefore

Fbowl = ε0

2

(
Q

4πε0 R

)2

2π

∫ π/2

0
sin θ cos θ dθ = 1

4πε0

Q2

8R2
. (8.23)

Meanwhile, for the equatorial disk,

da = −r dr dφ ẑ, (8.24)

and (since we are now inside the sphere)

E = 1

4πε0

Q

R3
r = 1

4πε0

Q

R3
r(cos φ x̂ + sin φ ŷ).

Thus

Tzz = ε0

2

(
E2

z − E2
x − E2

y

) = −ε0

2

(
Q

4πε0 R3

)2

r2,

and hence

(↔
T · da

)
z
= ε0

2

(
Q

4πε0 R3

)2

r3 dr dφ.

The force on the disk is therefore

Fdisk = ε0

2

(
Q

4πε0 R3

)2

2π

∫ R

0
r3dr = 1

4πε0

Q2

16R2
. (8.25)

Combining Eqs. 8.23 and 8.25, I conclude that the net force on the northern hemi-
sphere is

F = 1

4πε0

3Q2

16R2
. (8.26)
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Incidentally, in applying Eq. 8.21, any volume that encloses all of the charge
in question (and no other charge) will do the job. For example, in the present case
we could use the whole region z > 0. In that case the boundary surface consists
of the entire xy plane (plus a hemisphere at r = ∞, but E = 0 out there, so it
contributes nothing). In place of the “bowl,” we now have the outer portion of the
plane (r > R). Here

Tzz = −ε0

2

(
Q

4πε0

)2 1

r4

(Eq. 8.22 with θ = π/2 and R → r ), and da is given by Eq. 8.24, so

(↔
T · da

)
z
= ε0

2

(
Q

4πε0

)2 1

r3
dr dφ,

and the contribution from the plane for r > R is

ε0

2

(
Q

4πε0

)2

2π

∫ ∞

R

1

r3
dr = 1

4πε0

Q2

8R2
,

the same as for the bowl (Eq. 8.23).

I hope you didn’t get too bogged down in the details of Ex. 8.2. If so, take a
moment to appreciate what happened. We were calculating the force on a solid
object, but instead of doing a volume integral, as you might expect, Eq. 8.21
allowed us to set it up as a surface integral; somehow the stress tensor sniffs
out what is going on inside.

Problem 8.3 Calculate the force of magnetic attraction between the northern!
and southern hemispheres of a uniformly charged spinning spherical shell, with
radius R, angular velocity ω, and surface charge density σ . [This is the same as
Prob. 5.44, but this time use the Maxwell stress tensor and Eq. 8.21.]

Problem 8.4

(a) Consider two equal point charges q, separated by a distance 2a. Construct the
plane equidistant from the two charges. By integrating Maxwell’s stress tensor
over this plane, determine the force of one charge on the other.

(b) Do the same for charges that are opposite in sign.

8.2.3 Conservation of Momentum

According to Newton’s second law, the force on an object is equal to the rate of
change of its momentum:

F = dpmech

dt
.
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Equation 8.20 can therefore be written in the form5

dpmech

dt
= −ε0μ0

d

dt

∫
V

S dτ +
∮

S
↔
T · da, (8.27)

where pmech is the (mechanical) momentum of the particles in volume V . This
expression is similar in structure to Poynting’s theorem (Eq. 8.11), and it invites
an analogous interpretation: The first integral represents momentum stored in the
fields:

p = μ0ε0

∫
V

S dτ, (8.28)

while the second integral is the momentum per unit time flowing in through the
surface.

Equation 8.27 is the statement of conservation of momentum in electro-
dynamics: If the mechanical momentum increases, either the field momentum
decreases, or else the fields are carrying momentum into the volume through the
surface. The momentum density in the fields is evidently

g = μ0ε0S = ε0(E × B), (8.29)

and the momentum flux transported by the fields is −↔
T (specifically, −↔

T · da is
the electromagnetic momentum per unit time passing through the area da).

If the mechanical momentum in V is not changing (for example, if we are
talking about a region of empty space), then∫

∂g
∂t

dτ =
∮ ↔

T · da =
∫

∇ · ↔
T dτ,

and hence
∂g
∂t

= ∇ · ↔
T . (8.30)

This is the “continuity equation” for electromagnetic momentum, with g (momen-
tum density) in the role of ρ (charge density) and −↔

T playing the part of J; it
expresses the local conservation of field momentum. But in general (when there
are charges around) the field momentum by itself, and the mechanical momentum
by itself, are not conserved—charges and fields exchange momentum, and only
the total is conserved.

Notice that the Poynting vector has appeared in two quite different roles: S
itself is the energy per unit area, per unit time, transported by the electromagnetic
fields, while μ0ε0S is the momentum per unit volume stored in those fields.6

5Let’s assume the only forces acting are electromagnetic. You can include other forces if you like—
both here and in the discussion of energy conservation—but they are just a distraction from the essen-
tial story.
6This is no coincidence—see R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures
on Physics (Reading, Mass.: Addison-Wesley, 1964), Vol. II, Section 27-6.
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Similarly,
↔
T plays a dual role:

↔
T itself is the electromagnetic stress (force

per unit area) acting on a surface, and −↔
T describes the flow of momentum (it is

the momentum current density) carried by the fields.

Example 8.3. A long coaxial cable, of length l, consists of an inner conductor
(radius a) and an outer conductor (radius b). It is connected to a battery at one end
and a resistor at the other (Fig. 8.5). The inner conductor carries a uniform charge
per unit length λ, and a steady current I to the right; the outer conductor has the
opposite charge and current. What is the electromagnetic momentum stored in the
fields?

− − − − − −

− − − − − −

I

I

I

l

V

a
b

−

+ + + + + + +

+ + + + + + +

−

z

R

FIGURE 8.5

Solution
The fields are

E = 1

2πε0

λ

s
ŝ, B = μ0

2π

I

s
φ̂.

The Poynting vector is therefore

S = λI

4π2ε0s2
ẑ.

So energy is flowing down the line, from the battery to the resistor. In fact, the
power transported is

P =
∫

S · da = λI

4π2ε0

∫ b

a

1

s2
2πs ds = λI

2πε0
ln(b/a) = I V,

as it should be.
The momentum in the fields is

p = μ0ε0

∫
S dτ = μ0λI

4π2
ẑ
∫ b

a

1

s2
l2πs ds = μ0λI l

2π
ln(b/a) ẑ = I V l

c2
ẑ.

This is an astonishing result. The cable is not moving, E and B are static, and yet
we are asked to believe that there is momentum in the fields. If something tells
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you this cannot be the whole story, you have sound intuitions. But the resolution
of this paradox will have to await Chapter 12 (Ex. 12.12).

Suppose now that we turn up the resistance, so the current decreases. The
changing magnetic field will induce an electric field (Eq. 7.20):

E =
[

μ0

2π

d I

dt
ln s + K

]
ẑ.

This field exerts a force on ±λ:

F = λl

[
μ0

2π

d I

dt
ln a + K

]
ẑ − λl

[
μ0

2π

d I

dt
ln b + K

]
ẑ = −μ0λl

2π

d I

dt
ln(b/a) ẑ.

The total momentum imparted to the cable, as the current drops from I to 0, is
therefore

pmech =
∫

F dt = μ0λI l

2π
ln(b/a) ẑ,

which is precisely the momentum originally stored in the fields.

Problem 8.5 Imagine two parallel infinite sheets, carrying uniform surface charge
+σ (on the sheet at z = d) and −σ (at z = 0). They are moving in the y direction
at constant speed v (as in Problem 5.17).

(a) What is the electromagnetic momentum in a region of area A?

(b) Now suppose the top sheet moves slowly down (speed u) until it reaches the bot-
tom sheet, so the fields disappear. By calculating the total force on the charge
(q = σ A), show that the impulse delivered to the sheet is equal to the mo-
mentum originally stored in the fields. [Hint: As the upper plate passes by, the
magnetic field drops to zero, inducing an electric field that delivers an impulse
to the lower plate.]

Problem 8.6 A charged parallel-plate capacitor (with uniform electric field
E = E ẑ) is placed in a uniform magnetic field B = B x̂, as shown in Fig. 8.6.

z

y

x

d

B
A

E E

B

FIGURE 8.6
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(a) Find the electromagnetic momentum in the space between the plates.

(b) Now a resistive wire is connected between the plates, along the z axis, so that
the capacitor slowly discharges. The current through the wire will experience
a magnetic force; what is the total impulse delivered to the system, during the
discharge?7

Problem 8.7 Consider an infinite parallel-plate capacitor, with the lower plate (at
z = −d/2) carrying surface charge density −σ , and the upper plate (at z = +d/2)
carrying charge density +σ .

(a) Determine all nine elements of the stress tensor, in the region between the
plates. Display your answer as a 3 × 3 matrix:

⎛
⎜⎜⎜⎜⎝

Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

⎞
⎟⎟⎟⎟⎠

(b) Use Eq. 8.21 to determine the electromagnetic force per unit area on the top
plate. Compare Eq. 2.51.

(c) What is the electromagnetic momentum per unit area, per unit time, crossing
the xy plane (or any other plane parallel to that one, between the plates)?

(d) Of course, there must be mechanical forces holding the plates apart—perhaps
the capacitor is filled with insulating material under pressure. Suppose we sud-
denly remove the insulator; the momentum flux (c) is now absorbed by the
plates, and they begin to move. Find the momentum per unit time delivered to
the top plate (which is to say, the force acting on it) and compare your answer
to (b). [Note: This is not an additional force, but rather an alternative way of
calculating the same force—in (b) we got it from the force law, and in (d) we
do it by conservation of momentum.]

8.2.4 Angular Momentum

By now, the electromagnetic fields (which started out as mediators of forces
between charges) have taken on a life of their own. They carry energy (Eq. 8.5)

u = 1

2

(
ε0 E2 + 1

μ0
B2

)
, (8.31)

and momentum (Eq. 8.29)

g = ε0(E × B), (8.32)

7There is much more to be said about this problem, so don’t get too excited if your answers to (a) and
(b) appear to be consistent. See D. Babson, et al., Am. J. Phys. 77, 826 (2009).
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and, for that matter, angular momentum:

 = r × g = ε0 [r × (E × B)] . (8.33)

Even perfectly static fields can harbor momentum and angular momentum, as
long as E × B is nonzero, and it is only when these field contributions are included
that the conservation laws are sustained.

Example 8.4. Imagine a very long solenoid with radius R, n turns per unit
length, and current I . Coaxial with the solenoid are two long cylindrical (non-
conducting) shells of length l—one, inside the solenoid at radius a, carries a
charge +Q, uniformly distributed over its surface; the other, outside the solenoid
at radius b, carries charge −Q (see Fig. 8.7; l is supposed to be much greater
than b). When the current in the solenoid is gradually reduced, the cylinders begin
to rotate, as we found in Ex. 7.8. Question: Where does the angular momentum
come from?8

z

R

lb

+Q −Q

I

φ

a

FIGURE 8.7

Solution
It was initially stored in the fields. Before the current was switched off, there was
an electric field,

E = Q

2πε0l

1

s
ŝ (a < s < b),

in the region between the cylinders, and a magnetic field,

B = μ0nI ẑ (s < R),

8This is a variation on the “Feynman disk paradox” (R. P. Feynman, R. B. Leighton, and M. Sands,
The Feynman Lectures, vol 2, pp. 17-5 (Reading, Mass.: Addison-Wesley, 1964) suggested by F. L.
Boos, Jr. (Am. J. Phys. 52, 756 (1984)). A similar model was proposed earlier by R. H. Romer (Am. J.
Phys. 34, 772 (1966)). For further references, see T.-C. E. Ma, Am. J. Phys. 54, 949 (1986).
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inside the solenoid. The momentum density (Eq. 8.29) was therefore

g = −μ0nI Q

2πls
φ̂,

in the region a < s < R. The z component of the angular momentum density was

(r × g)z = −μ0nI Q

2πl
,

which is constant (independent of s). To get the total angular momentum in the
fields, we simply multiply by the volume, π(R2 − a2)l:9

L = −1

2
μ0nI Q(R2 − a2) ẑ. (8.34)

When the current is turned off, the changing magnetic field induces a circum-
ferential electric field, given by Faraday’s law:

E =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1

2
μ0n

d I

dt

R2

s
φ̂, (s > R),

−1

2
μ0n

d I

dt
s φ̂, (s < R).

Thus the torque on the outer cylinder is

Nb = r × (−QE) = 1

2
μ0nQ R2 d I

dt
ẑ,

and it picks up an angular momentum

Lb = 1

2
μ0nQ R2 ẑ

∫ 0

I

d I

dt
dt = −1

2
μ0nI Q R2 ẑ.

Similarly, the torque on the inner cylinder is

Na = −1

2
μ0nQa2 d I

dt
ẑ,

and its angular momentum increase is

La = 1

2
μ0nI Qa2 ẑ.

So it all works out: Lem = La + Lb. The angular momentum lost by the fields is
precisely equal to the angular momentum gained by the cylinders, and the total
angular momentum (fields plus matter) is conserved.

9The radial component integrates to zero, by symmetry.
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Problem 8.8 In Ex. 8.4, suppose that instead of turning off the magnetic field (by
reducing I ) we turn off the electric field, by connecting a weakly10 conducting
radial spoke between the cylinders. (We’ll have to cut a slot in the solenoid, so
the cylinders can still rotate freely.) From the magnetic force on the current in the
spoke, determine the total angular momentum delivered to the cylinders, as they
discharge (they are now rigidly connected, so they rotate together). Compare the
initial angular momentum stored in the fields (Eq. 8.34). (Notice that the mechanism
by which angular momentum is transferred from the fields to the cylinders is entirely
different in the two cases: in Ex. 8.4 it was Faraday’s law, but here it is the Lorentz
force law.)

Problem 8.9 Two concentric spherical shells carry uniformly distributed charges
+Q (at radius a) and −Q (at radius b > a). They are immersed in a uniform mag-
netic field B = B0 ẑ.

(a) Find the angular momentum of the fields (with respect to the center).

(b) Now the magnetic field is gradually turned off. Find the torque on each sphere,
and the resulting angular momentum of the system.

Problem 8.1011 Imagine an iron sphere of radius R that carries a charge Q and a!
uniform magnetization M = M ẑ. The sphere is initially at rest.

(a) Compute the angular momentum stored in the electromagnetic fields.

(b) Suppose the sphere is gradually (and uniformly) demagnetized (perhaps by
heating it up past the Curie point). Use Faraday’s law to determine the induced
electric field, find the torque this field exerts on the sphere, and calculate the
total angular momentum imparted to the sphere in the course of the demagneti-
zation.

(c) Suppose instead of demagnetizing the sphere we discharge it, by connecting a
grounding wire to the north pole. Assume the current flows over the surface in
such a way that the charge density remains uniform. Use the Lorentz force law
to determine the torque on the sphere, and calculate the total angular momentum
imparted to the sphere in the course of the discharge. (The magnetic field is
discontinuous at the surface . . . does this matter?) [Answer: 2

9 μ0 M Q R2]

8.3 MAGNETIC FORCES DO NO WORK12

This is perhaps a good place to revisit the old paradox that magnetic forces do no
work (Eq. 5.11). What about that magnetic crane lifting the carcass of a junked
car? Somebody is doing work on the car, and if it’s not the magnetic field, who

10In Ex. 8.4 we turned the current off slowly, to keep things quasistatic; here we reduce the electric
field slowly to keep the displacement current negligible.
11This version of the Feynman disk paradox was proposed by N. L. Sharma (Am. J. Phys. 56, 420
(1988)); similar models were analyzed by E. M. Pugh and G. E. Pugh, Am. J. Phys. 35, 153 (1967)
and by R. H. Romer, Am. J. Phys. 35, 445 (1967).
12This section can be skipped without loss of continuity. I include it for those readers who are disturbed
by the notion that magnetic forces do no work.
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Magnet

B

ω
aλ

FIGURE 8.8

is it? The car is ferromagnetic; in the presence of the magnetic field, it contains
a lot of microscopic magnetic dipoles (spinning electrons, actually), all lined up.
The resulting magnetization is equivalent to a bound current running around the
surface, so let’s model the car as a circular current loop—in fact, let’s make it an
insulating ring of line charge λ rotating at angular velocity ω (Fig. 8.8).

The upward magnetic force on the loop is (Eq. 6.2)

F = 2π I a Bs, (8.35)

where Bs is the radial component of the magnet’s field,13 and I = λωa. If the ring
rises a distance dz (while the magnet itself stays put), the work done on it is

dW = 2πa2λωBs dz. (8.36)

This increases the potential energy of the ring. Who did the work? Naively, it ap-
pears that the magnetic field is responsible, but we have already learned (Ex. 5.3)
that this is not the case—as the ring rises, the magnetic force is perpendicular to
the net velocity of the charges in the ring, so it does no work on them.

At the same time, however, a motional emf is induced in the ring, which
opposes the flow of charge, and hence reduces its angular velocity:

E = −d�

dt
.

Here d� is the flux through the “ribbon” joining the ring at time t to the ring at
time t + dt (Fig. 8.9):

d� = Bs 2πa dz.

dz

FIGURE 8.9

13Note that the field has to be nonuniform, or it won’t lift the car at all.
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Now

E =
∮

f · dl = f (2πa),

where f is the force per unit charge. So

f = −Bs
dz

dt
, (8.37)

the force on a segment of length dl is f λ dl, the torque on the ring is

N = a

(
−Bs

dz

dt

)
λ(2πa),

and the work done (slowing the rotation) is N dφ = Nω dt , or

dW = −2πa2λωBs dz. (8.38)

The ring slows down, and the rotational energy it loses (Eq. 8.38) is precisely
equal to the potential energy it gains (Eq. 8.36). All the magnetic field did was
convert energy from one form to another. If you’ll permit some sloppy language,
the work done by the vertical component of the magnetic force (Eq. 8.35) is equal
and opposite to the work done by its horizontal component (Eq. 8.37).14

What about the magnet? Is it completely passive in this process? Suppose we
model it as a big circular loop (radius b), resting on a table and carrying a current
Ib; the “junk car” is a relatively small current loop (radius a), on the floor directly
below, carrying a current Ia (Fig. 8.10). This time, just for a change, let’s assume
both currents are constant (we’ll include a regulated power supply in each loop15).
Parallel currents attract, and we propose to lift the small loop off the floor, keeping
careful track of the work done and the agency responsible.

b

Ib

Ia

h

a

FIGURE 8.10

14This argument is essentially the same as the one in Ex. 5.3, except that in this case I told the story
in terms of motional emf, instead of the Lorentz force law. But after all, the flux rule is a consequence
of the Lorentz force law.
15The lower loop could be a single spinning electron, in which case quantum mechanics fixes its
angular momentum at h̄/2. It might appear that this sustains the current, with no need for a power
supply. I will return to this point, but for now let’s just keep quantum mechanics out of it.
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Let’s start by adjusting the currents so the small ring just “floats,” a distance
h below the table, with the magnetic force exactly balancing the weight (mag) of
the little ring. I’ll let you calculate the magnetic force (Prob. 8.11):

Fmag = 3π

2
μ0 Ia Ib

a2b2h

(b2 + h2)5/2
= mag. (8.39)

Now the loop rises an infinitesimal distance dz; the work done is equal to the gain
in its potential energy

dWg = mag dz = 3π

2
μ0 Ia Ib

a2b2h

(b2 + h2)5/2
dz. (8.40)

Who did it? The magnetic field? No! The work was done by the power supply
that sustains the current in loop a (Ex. 5.3). As the loop rises, a motional emf is
induced in it. The flux through the loop is

�a = M Ib,

where M is the mutual inductance of the two loops:

M = πμ0

2

a2b2

(b2 + h2)3/2

(Prob. 7.22). The emf is

Ea = −d�a

dt
= −Ib

d M

dt
= −Ib

d M

dh

dh

dt

= −Ib

(
−3

2

)
πμ0

2

a2b2

(b2 + h2)5/2
2h

(−dz)

dt
.

The work done by the power supply (fighting against this motional emf) is

dWa = −Ea Ia dt = 3π

2
μ0 Ia Ib

a2b2h

(b2 + h2)5/2
dz (8.41)

—same as the work done in lifting the loop (Eq. 8.40).
Meanwhile, however, a Faraday emf is induced in the upper loop, due to the

changing flux from the lower loop:

�b = M Ia ⇒ Eb = −Ia
d M

dt
,

and the work done by the power supply in ring b (to sustain the current Ib) is

dWb = −Eb Ib dt = 3π

2
μ0 Ia Ib

a2b2h

(b2 + h2)5/2
dz, (8.42)

exactly the same as dWa . That’s embarrassing—the power supplies have done
twice as much work as was necessary to lift the junk car! Where did the “wasted”
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energy go? Answer: It increased the energy stored in the fields. The energy in a
system of two current-carrying loops is (see Prob. 8.12)

U = 1

2
La I 2

a + 1

2
Lb I 2

b + M Ia Ib, (8.43)

so

dU = Ia Ib
d M

dt
dt = dWb.

Remarkably, all four energy increments are the same. If we care to apportion
things this way, the power supply in loop a contributes the energy necessary to lift
the lower ring, while the power supply in loop b provides the extra energy for the
fields. If all we’re interested in is the work done to raise the ring, we can ignore
the upper loop (and the energy in the fields) altogether.

In both these models, the magnet itself was stationary. That’s like lifting a
paper clip by holding a magnet over it. But in the case of the magnetic crane, the
car stays in contact with the magnet, which is attached to a cable that lifts the
whole works. As a model, we might stick the upper loop in a big box, the lower
loop in a little box, and crank up the currents so the force of attraction is much
greater than mag; the two boxes snap together, and we attach a string to the upper
box and pull up on it (Fig. 8.11).

The same old mechanism (Ex. 5.3) prevails: as the lower loop rises, the mag-
netic force tilts backwards; its vertical component lifts the loop, but its horizontal
component opposes the current, and no net work is done. This time, however, the
motional emf is perfectly balanced by the Faraday emf fighting to keep the current
going—the flux through the lower loop is not changing. (If you like, the flux is
increasing because the loop is moving upward, into a region of higher magnetic
field, but it is decreasing because the magnetic field of the upper loop—at any give
point in space—is decreasing as that loop moves up.) No power supply is needed
to sustain the current (and for that matter, no power supply is required in the upper
loop either, since the energy in the fields is not changing. Who did the work to lift
the car? The person pulling up on the rope, obviously. The role of the magnetic
field was merely to transmit this energy to the car, via the vertical component of
the magnetic force. But the magnetic field itself (as always) did no work.

FIGURE 8.11
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The fact that magnetic fields do no work follows directly from the Lorentz
force law, so if you think you have discovered an exception, you’re going to have
to explain why that law is incorrect. For example, if magnetic monopoles exist,
the force on a particle with electric charge qe and magnetic charge qm becomes
(Prob. 7.38):

F = qe(E + v × B) + qm (B − ε0μ0v × E) . (8.44)

In that case, magnetic fields can do work . . . but only on magnetic charges. So
unless your car is made of monopoles (I don’t think so), this doesn’t solve the
problem.

A somewhat less radical possibility is that in addition to electric charges there
exist permanent point magnetic dipoles (electrons?), whose dipole moment m is
not associated with any electric current, but simply is. The Lorentz force law
acquires an extra term

F = q(E + v × B) + ∇(m · B).

The magnetic field can do work on these “intrinsic” dipoles (which experience
no motional or Faraday emf, since they enclose no flux). I don’t know whether a
consistent theory can be constructed in this way, but in any event it is not classical
electrodynamics, which is predicated on Ampère’s assumption that all magnetic
phenomena are due to electric charges in motion, and point magnetic dipoles must
be interpreted as the limits of tiny current loops.

Problem 8.11 Derive Eq. 8.39. [Hint: Treat the lower loop as a magnetic dipole.]

Problem 8.12 Derive Eq. 8.43. [Hint: Use the method of Section 7.2.4, building the
two currents up from zero to their final values.]

More Problems on Chapter 8

Problem 8.1316 A very long solenoid of radius a, with n turns per unit length,
carries a current Is . Coaxial with the solenoid, at radius b � a, is a circular ring of
wire, with resistance R. When the current in the solenoid is (gradually) decreased,
a current Ir is induced in the ring.

(a) Calculate Ir , in terms of d Is/dt .

(b) The power (I 2
r R) delivered to the ring must have come from the solenoid. Con-

firm this by calculating the Poynting vector just outside the solenoid (the elec-
tric field is due to the changing flux in the solenoid; the magnetic field is due
to the current in the ring). Integrate over the entire surface of the solenoid, and
check that you recover the correct total power.

16For extensive discussion, see M. A. Heald, Am. J. Phys. 56, 540 (1988).
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Problem 8.14 An infinitely long cylindrical tube, of radius a, moves at constant
speed v along its axis. It carries a net charge per unit length λ, uniformly distributed
over its surface. Surrounding it, at radius b, is another cylinder, moving with the
same velocity but carrying the opposite charge (−λ). Find:

(a) The energy per unit length stored in the fields.

(b) The momentum per unit length in the fields.

(c) The energy per unit time transported by the fields across a plane perpendicular
to the cylinders.

Problem 8.15 A point charge q is located at the center of a toroidal coil of rectan-
gular cross section, inner radius a, outer radius a + w, and height h, which carries
a total of N tightly-wound turns and current I .

(a) Find the electromagnetic momentum p of this configuration, assuming that w

and h are both much less than a (so you can ignore the variation of the fields
over the cross section).

(b) Now the current in the toroid is turned off, quickly enough that the point charge
does not move appreciably as the magnetic field drops to zero. Show that the
impulse imparted to q is equal to the momentum originally stored in the elec-
tromagnetic fields. [Hint: You might want to refer to Prob. 7.19.]

Problem 8.1617 A sphere of radius R carries a uniform polarization P and a uniform
magnetization M (not necessarily in the same direction). Find the electromagnetic
momentum of this configuration. [Answer: (4/9)πμ0 R3(M × P)]

Problem 8.1718 Picture the electron as a uniformly charged spherical shell, with
charge e and radius R, spinning at angular velocity ω.

(a) Calculate the total energy contained in the electromagnetic fields.

(b) Calculate the total angular momentum contained in the fields.

(c) According to the Einstein formula (E = mc2), the energy in the fields should
contribute to the mass of the electron. Lorentz and others speculated that the
entire mass of the electron might be accounted for in this way: Uem = mec2.
Suppose, moreover, that the electron’s spin angular momentum is entirely
attributable to the electromagnetic fields: Lem = h̄/2. On these two assump-
tions, determine the radius and angular velocity of the electron. What is their
product, ωR? Does this classical model make sense?

Problem 8.18 Work out the formulas for u, S, g, and
↔
T in the presence of

magnetic charge. [Hint: Start with the generalized Maxwell equations (7.44) and
Lorentz force law (Eq. 8.44), and follow the derivations in Sections 8.1.2, 8.2.2,
and 8.2.3.]

17For an interesting discussion and references, see R. H. Romer, Am. J. Phys. 63, 777 (1995).
18See J. Higbie, Am. J. Phys. 56, 378 (1988).
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Problem 8.1919 Suppose you had an electric charge qe and a magnetic monopole!
qm . The field of the electric charge is

E = 1

4πε0

qe

r2
r̂

(of course), and the field of the magnetic monopole is

B = μ0

4π

qm

r2
r̂.

Find the total angular momentum stored in the fields, if the two charges are sepa-
rated by a distance d . [Answer: (μ0/4π)qeqm .]20

Problem 8.20 Consider an ideal stationary magnetic dipole m in a static electric
field E. Show that the fields carry momentum

p = −ε0μ0(m × E). (8.45)

[Hint: There are several ways to do this. The simplest method is to start with
p = ε0

∫
(E × B) dτ , write E = −∇V , and use integration by parts to show that

p = ε0μ0

∫
V J dτ.

So far, this is valid for any localized static configuration. For a current confined
to an infinitesimal neighborhood of the origin we can approximate V (r) ≈ V (0) −
E(0) · r. Treat the dipole as a current loop, and use Eqs. 5.82 and 1.108.]21

Problem 8.21 Because the cylinders in Ex. 8.4 are left rotating (at angular veloci-
ties ωa and ωb, say), there is actually a residual magnetic field, and hence angular
momentum in the fields, even after the current in the solenoid has been extinguished.
If the cylinders are heavy, this correction will be negligible, but it is interesting to
do the problem without making that assumption.22

(a) Calculate (in terms of ωa and ωb) the final angular momentum in the fields.
[Define ωωω = ω ẑ, so ωa and ωb could be positive or negative.]

(b) As the cylinders begin to rotate, their changing magnetic field induces an extra
azimuthal electric field, which, in turn, will make an additional contribution to

19This system is known as Thomson’s dipole. See I. Adawi, Am. J. Phys. 44, 762 (1976) and Phys.
Rev. D31, 3301 (1985), and K. R. Brownstein, Am. J. Phys. 57, 420 (1989), for discussion and refer-
ences.
20Note that this result is independent of the separation distance d! It points from qe toward qm . In
quantum mechanics, angular momentum comes in half-integer multiples of h̄, so this result suggests
that if magnetic monopoles exist, electric and magnetic charge must be quantized: μ0qeqm/4π =
nh̄/2, for n = 1, 2, 3, . . . , an idea first proposed by Dirac in 1931. If even one monopole is lurking
somewhere in the universe, this would “explain” why electric charge comes in discrete units. (How-
ever, see D. Singleton, Am. J. Phys. 66, 697 (1998) for a cautionary note.)
21As it stands, Eq. 8.45 is valid only for ideal dipoles. But g is linear in B, and therefore, if E is held
fixed, obeys the superposition principle: For a collection of magnetic dipoles, the total momentum is
the (vector) sum of the momenta for each one separately. In particular, if E is uniform over a localized
steady current distribution, then Eq. 8.45 is valid for the whole thing, only now m is the total magnetic
dipole moment.
22This problem was suggested by Paul DeYoung.
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the torques. Find the resulting extra angular momentum, and compare it with
your result in (a). [Answer: −μ0 Q2ωb(b2 − a2)/4πl ẑ]

Problem 8.2223 A point charge q is a distance a > R from the axis of an infinite
solenoid (radius R, n turns per unit length, current I ). Find the linear momen-
tum and the angular momentum (with respect to the origin) in the fields. (Put
q on the x axis, with the solenoid along z; treat the solenoid as a nonconduc-
tor, so you don’t need to worry about induced charges on its surface.) [Answer:
p = (μ0qnI R2/2a) ŷ; L = 0]

Problem 8.23

(a) Carry through the argument in Sect. 8.1.2, starting with Eq. 8.6, but using J f in
place of J. Show that the Poynting vector becomes

S = E × H, (8.46)

and the rate of change of the energy density in the fields is

∂u

∂t
= E · ∂D

∂t
+ H · ∂B

∂t
.

For linear media, show that24

u = 1

2
(E · D + B · H). (8.47)

(b) In the same spirit, reproduce the argument in Sect. 8.2.2, starting with Eq. 8.15,
with ρ f and J f in place of ρ and J. Don’t bother to construct the Maxwell stress
tensor, but do show that the momentum density is25

g = D × B. (8.48)

Problem 8.24

A circular disk of radius R and mass M carries n point charges (q), attached at
regular intervals around its rim. At time t = 0 the disk lies in the xy plane, with its
center at the origin, and is rotating about the z axis with angular velocity ω0, when
it is released. The disk is immersed in a (time-independent) external magnetic field

B(s, z) = k(−s ŝ + 2z ẑ),

where k is a constant.

(a) Find the position of the center if the ring, z(t), and its angular velocity, ω(t), as
functions of time. (Ignore gravity.)

(b) Describe the motion, and check that the total (kinetic) energy—translational
plus rotational—is constant, confirming that the magnetic force does no work.26

23See F. S. Johnson, B. L. Cragin, and R. R. Hodges, Am. J. Phys. 62, 33 (1994), and B. Y.-K. Hu,
Eur. J. Phys. 33, 873 (2012), for discussion of this and related problems.
24Refer to Sect. 4.4.3 for the meaning of “energy” in this context.
25For over 100 years there has been a raging debate (still not completely resolved) as to whether
the field momentum in polarizable/magnetizable media is Eq. 8.48 (Minkowski’s candidate) or ε0μ0

(E × H) (Abraham’s). See D. J. Griffiths, Am. J. Phys. 80, 7 (2012).
26This cute problem is due to K. T. McDonald, http://puhep1.princeton.edu/mcdonald/examles/
disk.pdf (who draws a somewhat different conclusion).



Class: B. Tech (Unit II) 

I have taken all course materials for Unit II from Book Concept of Modern Physics by Arthur 

Besier, Shobhit Mahajan & S. Rai Choudhury (McGraw Hill Education). 

Students can download this book form given web address;  

Web Address :  https://b-ok.cc/book/2700591/864ac0 

All topics of unit II (Quantum Mechanics) have been taken from Chapter 3 & Chapter 5 from 

above said book ( https://b-ok.cc/book/2700591/864ac0 ). I am sending pdf file of 

Chapter 3 & Chapter 5.  

 

UNIT-1I: Quantum Mechanics                                                    (8 Hours) 

Origin of the quantum Mechanics, Interpretation of Wave function, Normalization, 

Schrodinger time-independent & time-dependent equations, basic postulates of the quantum 

Mechanics, Probability Current Density, Expectation values, Operators, Hermitian operators, 

Communication relation between Position & Momentum operators; Applications of 

Schrödinger equation in Particle in a box, Single step barrier, Harmonic Oscillator, Problems.  

 

 

 

https://b-ok.cc/book/2700591/864ac0
https://b-ok.cc/book/2700591/864ac0


92

CHAPTER 3

Wave Properties of Particles

In a scanning electron microscope, an electron beam that scans a specimen causes secondary

electrons to be ejected in numbers that vary with the angle of the surface. A suitable data display

suggests the three-dimensional form of the specimen. The high resolution of this image of a red

spider mite on a leaf is a consequence of the wave nature of moving electrons.

3.1 DE BROGLIE WAVES
A moving body behaves in certain ways as
though it has a wave nature

3.2 WAVES OF WHAT?
Waves of probability

3.3 DESCRIBING A WAVE
A general formula for waves

3.4 PHASE AND GROUP VELOCITIES
A group of waves need not have the same
velocity as the waves themselves

3.5 PARTICLE DIFFRACTION
An experiment that confirms the existence of 
de Broglie waves

3.6 PARTICLE IN A BOX
Why the energy of a trapped particle is
quantized

3.7 UNCERTAINTY PRINCIPLE I
We cannot know the future because we cannot
know the present

3.8 UNCERTAINTY PRINCIPLE II
A particle approach gives the same result

3.9 APPLYING THE UNCERTAINTY PRINCIPLE
A useful tool, not just a negative statement



L
ooking back, it may seem odd that two decades passed between the 1905
discovery of the particle properties of waves and the 1924 speculation that
particles might show wave behavior. It is one thing, however, to suggest a rev-

olutionary concept to explain otherwise mysterious data and quite another to suggest
an equally revolutionary concept without a strong experimental mandate. The latter is
just what Louis de Broglie did in 1924 when he proposed that moving objects have
wave as well as particle characteristics. So different was the scientific climate at the
time from that around the turn of the century that de Broglie’s ideas soon received
respectful attention, whereas the earlier quantum theory of light of Planck and Einstein
had been largely ignored despite its striking empirical support. The existence of de
Broglie waves was experimentally demonstrated by 1927, and the duality principle they
represent provided the starting point for Schrödinger’s successful development of
quantum mechanics in the previous year.
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Louis de Broglie (1892–1987),

although coming from a French

family long identified with diplo-

macy and the military and initially

a student of history, eventually

followed his older brother

Maurice in a career in physics. His

doctoral thesis in 1924 contained

the proposal that moving bodies

have wave properties that com-

plement their particle properties:

these “seemingly incompatible

conceptions can each represent an

aspect of the truth. . . . They may serve in turn to represent

the facts without ever entering into direct conflict.” Part of

de Broglie’s inspiration came from Bohr’s theory of the hydro-

gen atom, in which the electron is supposed to follow only cer-

tain orbits around the nucleus. “This fact suggested to me the

idea that electrons . . . could not be considered simply as par-

ticles but that periodicity must be assigned to them also.” Two

years later Erwin Schrödinger used the concept of de Broglie

waves to develop a general theory that he and others applied

to explain a wide variety of atomic phenomena. The existence

of de Broglie waves was confirmed in diffraction experiments

with electron beams in 1927, and in 1929 de Broglie received

the Nobel Prize.

3.1   DE BROGLIE WAVES

A moving body behaves in certain ways as though it has a wave nature

A photon of light of frequency � has the momentum

p � �

since �� � c. The wavelength of a photon is therefore specified by its momentum
according to the relation

Photon wavelength � � (3.1)

De Broglie suggested that Eq. (3.1) is a completely general one that applies to material
particles as well as to photons. The momentum of a particle of mass m and velocity �
is p � �m�, and its de Broglie wavelength is accordingly 

� � (3.2)
h

�
�m�

De Broglie 

wavelength

h
�
p

h
�
�

h�
�
c



The greater the particle’s momentum, the shorter its wavelength. In Eq. (3.2) � is the
relativistic factor

� �

As in the case of em waves, the wave and particle aspects of moving bodies can never
be observed at the same time. We therefore cannot ask which is the “correct” descrip-
tion. All that can be said is that in certain situations a moving body resembles a wave
and in others it resembles a particle. Which set of properties is most conspicuous depends
on how its de Broglie wavelength compares with its dimensions and the dimensions of
whatever it interacts with.

Example 3.1

Find the de Broglie wavelengths of (a) a 46-g golf ball with a velocity of 30 m/s, and (b) an

electron with a velocity of 107 m/s.

Solution

(a) Since � �� c, we can let � � 1. Hence

� � � � 4.8 � 10�34 m

The wavelength of the golf ball is so small compared with its dimensions that we would not

expect to find any wave aspects in its behavior.

(b) Again � �� c, so with m � 9.1 � 10�31 kg, we have

� � � � 7.3 � 10�11 m

The dimensions of atoms are comparable with this figure—the radius of the hydrogen atom, for

instance, is 5.3 � 10�11 m. It is therefore not surprising that the wave character of moving elec-

trons is the key to understanding atomic structure and behavior.

Example 3.2

Find the kinetic energy of a proton whose de Broglie wavelength is 1.000 fm � 1.000 �

10�15 m, which is roughly the proton diameter.

Solution

A relativistic calculation is needed unless pc for the proton is much smaller than the proton rest

energy of E0 � 0.938 GeV. To find out, we use Eq. (3.2) to determine pc:

pc � (�m�)c � � � 1.240 � 109 eV

� 1.2410 GeV

Since pc � E0 a relativistic calculation is required. From Eq. (1.24) the total energy of the proton is

E � �E2
0 � p�2c2� � �(0.938� GeV)2� � (1.�2340 G�eV)2� � 1.555 GeV

(4.136 � 10�15 eV 	 s)(2.998 � 108 m/s)
�����

1.000 � 10�15 m

hc
�
�

6.63 � 10�34 J 	 s
���
(9.1 � 10�31 kg)(107 m/s)

h
�
m�

6.63 � 10�34 J 	 s
���
(0.046 kg)(30 m/s)

h
�
m�

1
��
�1 � �

2��c2�
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The corresponding kinetic energy is

KE � E � E0 � (1.555 � 0.938) GeV � 0.617 GeV � 617 MeV

De Broglie had no direct experimental evidence to support his conjecture. However,
he was able to show that it accounted in a natural way for the energy quantization—
the restriction to certain specific energy values—that Bohr had had to postulate in his
1913 model of the hydrogen atom. (This model is discussed in Chap. 4.) Within a few
years Eq. (3.2) was verified by experiments involving the diffraction of electrons by
crystals. Before we consider one of these experiments, let us look into the question of
what kind of wave phenomenon is involved in the matter waves of de Broglie.

3.2   WAVES OF WHAT?

Waves of probability

In water waves, the quantity that varies periodically is the height of the water surface.
In sound waves, it is pressure. In light waves, electric and magnetic fields vary. What
is it that varies in the case of matter waves?

The quantity whose variations make up matter waves is called the wave function,
symbol 
 (the Greek letter psi). The value of the wave function associated with a mov-
ing body at the particular point x, y, z in space at the time t is related to the likelihood
of finding the body there at the time.

Max Born (1882–1970) grew up in

Breslau, then a German city but to-

day part of Poland, and received a

doctorate in applied mathematics at

Göttingen in 1907. Soon afterward

he decided to concentrate on

physics, and was back in Göttingen

in 1909 as a lecturer. There he

worked on various aspects of the

theory of crystal lattices, his “cen-

tral interest” to which he often re-

turned in later years. In 1915, at

Planck’s recommendation, Born became professor of physics in

Berlin where, among his other activities, he played piano to

Einstein’s violin. After army service in World War I and a period

at Frankfurt University, Born was again in Göttingen, now as pro-

fessor of physics. There a remarkable center of theoretical physics

developed under his leadership: Heisenberg and Pauli were

among his assistants and Fermi, Dirac, Wigner, and Goeppert

were among those who worked with him, just to name future

Nobel Prize winners. In those days, Born wrote, “There was com-

plete freedom of teaching and learning in German universities,

with no class examinations, and no control of students. The Uni-

versity just offered lectures and the student had to decide for

himself which he wished to attend.”

Born was a pioneer in going from “the bright realm of classi-

cal physics into the still dark and unexplored underworld of the

new quantum mechanics;” he was the first to use the latter term.

From Born came the basic concept that the wave function 
 of

a particle is related to the probability of finding it. He began with

an idea of Einstein, who “sought to make the duality of particles

(light quanta or photons) and waves comprehensible by inter-

preting the square of the optical wave amplitude as probability

density for the occurrence of photons. This idea could at once

be extended to the 
-function: �
�2 must represent the proba-

bility density for electrons (or other particles). To assert this was

easy; but how was it to be proved? For this purpose atomic scat-

tering processes suggested themselves.” Born’s development of

the quantum theory of atomic scattering (collisions of atoms with

various particles) not only verified his “new way of thinking about

the phenomena of nature” but also founded an important branch

of theoretical physics.

Born left Germany in 1933 at the start of the Nazi period,

like so many other scientists. He became a British subject and

was associated with Cambridge and then Edinburg universities

until he retired in 1953. Finding the Scottish climate harsh and

wishing to contribute to the democratization of postwar Germany,

Born spent the rest of his life in Bad Pyrmont, a town near

Göttingen. His textbooks on modern physics and on optics were

standard works on these subjects for many years.



The wave function 
 itself, however, has no direct physical significance. There is a
simple reason why 
 cannot by interpreted in terms of an experiment. The probabil-
ity that something be in a certain place at a given time must lie between 0 (the object
is definitely not there) and 1 (the object is definitely there). An intermediate proba-
bility, say 0.2, means that there is a 20% chance of finding the object. But the ampli-
tude of a wave can be negative as well as positive, and a negative probability, say �0.2,
is meaningless. Hence 
 by itself cannot be an observable quantity.

This objection does not apply to �
�2, the square of the absolute value of the wave
function, which is known as probability density:

The probability of experimentally finding the body described by the wave function

 at the point x, y, z, at the time t is proportional to the value of �
�2 there at t.

A large value of �
�2 means the strong possibility of the body’s presence, while a small
value of �
�2 means the slight possibility of its presence. As long as �
�2 is not actually
0 somewhere, however, there is a definite chance, however small, of detecting it there.
This interpretation was first made by Max Born in 1926.

There is a big difference between the probability of an event and the event itself. Al-
though we can speak of the wave function 
 that describes a particle as being spread
out in space, this does not mean that the particle itself is thus spread out. When an ex-
periment is performed to detect electrons, for instance, a whole electron is either found
at a certain time and place or it is not; there is no such thing as a 20 percent of an elec-
tron. However, it is entirely possible for there to be a 20 percent chance that the elec-
tron be found at that time and place, and it is this likelihood that is specified by �
�2.

W. L. Bragg, the pioneer in x-ray diffraction, gave this loose but vivid interpreta-
tion: “The dividing line between the wave and particle nature of matter and radiation
is the moment ‘now.’ As this moment steadily advances through time it coagulates a
wavy future into a particle past. . . . Everything in the future is a wave, everything in
the past is a particle.” If “the moment ‘now’ ” is understood to be the time a measure-
ment is performed, this is a reasonable way to think about the situation. (The philoso-
pher Søren Kierkegaard may have been anticipating this aspect of modern physics when
he wrote, “Life can only be understood backwards, but it must be lived forwards.”)

Alternatively, if an experiment involves a great many identical objects all described
by the same wave function 
, the actual density (number per unit volume) of objects
at x, y, z at the time t is proportional to the corresponding value of �
�2. It is instruc-
tive to compare the connection between 
 and the density of particles it describes with
the connection discussed in Sec. 2.4 between the electric field E of an electromagnetic
wave and the density N of photons associated with the wave.

While the wavelength of the de Broglie waves associated with a moving body is
given by the simple formula � � h��m�, to find their amplitude 
 as a function of
position and time is often difficult. How to calculate 
 is discussed in Chap. 5 and
the ideas developed there are applied to the structure of the atom in Chap. 6. Until
then we can assume that we know as much about 
 as each situation requires.

3.3   DESCRIBING A WAVE

A general formula for waves

How fast do de Broglie waves travel? Since we associate a de Broglie wave with a moving
body, we expect that this wave has the same velocity as that of the body. Let us see if
this is true.
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If we call the de Broglie wave velocity �p, we can apply the usual formula

�p � ��

to find �p. The wavelength � is simply the de Broglie wavelength � � h��m�. To find
the frequency, we equate the quantum expression E � h� with the relativistic formula
for total energy E � �mc2 to obtain

h� � �mc2

� �

The de Broglie wave velocity is therefore

�p � �� � � �� � � (3.3)

Because the particle velocity � must be less than the velocity of light c, the de Broglie
waves always travel faster than light! In order to understand this unexpected result, we
must look into the distinction between phase velocity and group velocity. (Phase ve-
locity is what we have been calling wave velocity.)

Let us begin by reviewing how waves are described mathematically. For simplicity
we consider a string stretched along the x axis whose vibrations are in the y direction,
as in Fig. 3.1, and are simple harmonic in character. If we choose t � 0 when the
displacement y of the string at x � 0 is a maximum, its displacement at any future
time t at the same place is given by the formula

y � A cos 2��t (3.4)

c2

�
�

h
�
�m�

�mc2

�
h

De Broglie phase

velocity

�mc2

�
h
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Figure 3.1 (a) The appearance of a wave in a stretched string at a certain time. (b) How the
displacement of a point on the string varies with time.

(a)

A

0

–A

y

x

t = 0

Vibrating string

A

0

–A

y

t

x = 0

y = A cos 2π�t

(b)



where A is the amplitude of the vibrations (that is, their maximum displacement on
either side of the x axis) and � their frequency.

Equation (3.4) tells us what the displacement of a single point on the string is as a
function of time t. A complete description of wave motion in a stretched string, how-
ever, should tell us what y is at any point on the string at any time. What we want is
a formula giving y as a function of both x and t.

To obtain such a formula, let us imagine that we shake the string at x � 0 when 
t � 0, so that a wave starts to travel down the string in the �x direction (Fig. 3.2).
This wave has some speed �p that depends on the properties of the string. The wave
travels the distance x � �pt in the time t, so the time interval between the formation
of the wave at x � 0 and its arrival at the point x is x��p. Hence the displacement y
of the string at x at any time t is exactly the same as the value of y at x � 0 at the
earlier time t � x��p. By simply replacing t in Eq. (3.4) with t � x��p, then, we have
the desired formula giving y in terms of both x and t:

y � A cos 2���t � � (3.5)

As a check, we note that Eq. (3.5) reduces to Eq. (3.4) at x � 0.
Equation (3.5) may be rewritten

y � A cos 2���t � �
Since the wave speed �p is given by �p � �� we have

y � A cos 2���t � � (3.6)

Equation (3.6) is often more convenient to use than Eq. (3.5).
Perhaps the most widely used description of a wave, however, is still another form

of Eq. (3.5). The quantities angular frequency � and wave number k are defined by
the formulas

x
�
�

Wave formula

�x
�
�p

x
�
�p

Wave formula
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Figure 3.2 Wave propagation.
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� � 2�� (3.7)

k � � (3.8)

The unit of � is the radian per second and that of k is the radian per meter. An-
gular frequency gets its name from uniform circular motion, where a particle that moves
around a circle � times per second sweeps out 2�� rad/s. The wave number is equal
to the number of radians corresponding to a wave train 1 m long, since there are 2� rad
in one complete wave.

In terms of � and k, Eq. (3.5) becomes

y � A cos (�t � kx) (3.9)

In three dimensions k becomes a vector k normal to the wave fronts and x is re-
placed by the radius vector r. The scalar product k � r is then used instead of kx in
Eq. (3.9).

3.4   PHASE AND GROUP VELOCITIES

A group of waves need not have the same velocity as 
the waves themselves

The amplitude of the de Broglie waves that correspond to a moving body reflects the
probability that it will be found at a particular place at a particular time. It is clear that
de Broglie waves cannot be represented simply by a formula resembling Eq. (3.9),
which describes an indefinite series of waves all with the same amplitude A. Instead,
we expect the wave representation of a moving body to correspond to a wave packet,
or wave group, like that shown in Fig. 3.3, whose waves have amplitudes upon which
the likelihood of detecting the body depends.

A familiar example of how wave groups come into being is the case of beats.
When two sound waves of the same amplitude but of slightly different frequencies
are produced simultaneously, the sound we hear has a frequency equal to the aver-
age of the two original frequencies and its amplitude rises and falls periodically.
The amplitude fluctuations occur as many times per second as the difference be-
tween the two original frequencies. If the original sounds have frequencies of,
say, 440 and 442 Hz, we will hear a fluctuating sound of frequency 441 Hz with
two loudness peaks, called beats, per second. The production of beats is illustrated
in Fig. 3.4.

A way to mathematically describe a wave group, then, is in terms of a superposi-
tion of individual waves of different wavelengths whose interference with one another
results in the variation in amplitude that defines the group shape. If the velocities of
the waves are the same, the velocity with which the wave group travels is the common
phase velocity. However, if the phase velocity varies with wavelength, the different
individual waves do not proceed together. This situation is called dispersion. As a
result the wave group has a velocity different from the phase velocities of the waves
that make it up. This is the case with de Broglie waves.

Wave formula

�
�
�p

2�
�
�

Wave number

Angular frequency
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Figure 3.3 A wave group.
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It is not hard to find the velocity �g with which a wave group travels. Let us sup-
pose that the wave group arises from the combination of two waves that have the same
amplitude A but differ by an amount �� in angular frequency and an amount �k in
wave number. We may represent the original waves by the formulas

y1 � A cos (�t � kx)

y2 � A cos [(� � ��) t � (k � �k)x]

The resultant displacement y at any time t and any position x is the sum of y1 and y2.
With the help of the identity

cos � � cos 	 � 2 cos �
1

2
�(� � 	) cos �

1

2
�(� � 	)

and the relation

cos(�
) � cos 


we find that

y � y1 � y2

� 2A cos �
1

2
�[(2� � ��) t � (2k � �k)x] cos �

1

2
�(�� t � �k x)

Since �� and �k are small compared with � and k respectively,

2� � �� � 2�

2k � �k � 2k

and so

Beats y � 2A cos (�t � kx) cos � t � x� (3.10)
�k
�
2

��
�

2

100 Chapter Three

Figure 3.4 Beats are produced by the superposition of two waves with different frequencies.
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Equation (3.10) represents a wave of angular frequency � and wave number k
that has superimposed upon it a modulation of angular frequency �

1

2
��� and of wave

number �
1

2
��k.

The effect of the modulation is to produce successive wave groups, as in Fig. 3.4.
The phase velocity �p is

Phase velocity �p � (3.11)

and the velocity �g of the wave groups is

Group velocity �g � (3.12)

When � and k have continuous spreads instead of the two values in the preceding
discussion, the group velocity is instead given by

Group velocity �g � (3.13)

Depending on how phase velocity varies with wave number in a particular situa-
tion, the group velocity may be less or greater than the phase velocities of its member
waves. If the phase velocity is the same for all wavelengths, as is true for light waves
in empty space, the group and phase velocities are the same.

The angular frequency and wave number of the de Broglie waves associated with a
body of mass m moving with the velocity � are

� � 2�� �

� (3.14)

k � �

� (3.15)

Both � and k are functions of the body’s velocity �.
The group velocity �g of the de Broglie waves associated with the body is

�g � �

Now �

�
2�m

��
h(1 � �2�c2)3�2

dk
�
d�

2�m�
��
h(1 � �2�c2)3�2

d�
�
d�

d��d�
�
dk�d�

d�
�
dk

2�m�
��
h�1 � �2��c2�

Wave number of
de Broglie waves

2��m�
�

h

2�
�
�

2�mc2

��
h�1 � �2��c2�

Angular frequency of
de Broglie waves

2��mc2

�
h

d�
�
dk

��
�
�k

�
�
k
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Electron Microscopes

T he wave nature of moving electrons is the basis of the electron microscope, the first of

which was built in 1932. The resolving power of any optical instrument, which is limited

by diffraction, is proportional to the wavelength of whatever is used to illuminate the specimen.

In the case of a good microscope that uses visible light, the maximum useful magnification is

about 500�; higher magnifications give larger images but do not reveal any more detail. Fast

electrons, however, have wavelengths very much shorter than those of visible light and are eas-

ily controlled by electric and magnetic fields because of their charge. X-rays also have short wave-

lengths, but it is not (yet?) possible to focus them adequately.

In an electron microscope, current-carrying coils produce magnetic fields that act as lenses

to focus an electron beam on a specimen and then produce an enlarged image on a fluorescent

screen or photographic plate (Fig. 3.5). To prevent the beam from being scattered and thereby

blurring the image, a thin specimen is used and the entire system is evacuated.

The technology of magnetic “lenses” does not permit the full theoretical resolution of electron

waves to be realized in practice. For instance, 100-keV electrons have wavelengths of 0.0037 nm,

but the actual resolution they can provide in an electron microscope may be only about 0.1 nm.

However, this is still a great improvement on the 	200-nm resolution of an optical microscope,

and magnifications of over 1,000,000� have been achieved with electron microscopes.
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Figure 3.5 Because the wave-
lengths of the fast electrons in an
electron microscope are shorter
than those of the light waves in
an optical microscope, the elec-
tron microscope can produce
sharp images at higher magnifi-
cations. The electron beam in an
electron microscope is focused
by magnetic fields.

Electron source

Magnetic
condensing lens

Object

Magnetic
objective lens

Electron paths

Magnetic
projection
lens

Image

Electron micrograph showing bacteriophage viruses in an
Escherichia coli bacterium. The bacterium is approximately
1 �m across.

An electron microscope.



and so the group velocity turns out to be

�g � � (3.16)

The de Broglie wave group associated with a moving body travels with the same
velocity as the body.

The phase velocity �p of de Broglie waves is, as we found earlier,

�p � � (3.3)

This exceeds both the velocity of the body � and the velocity of light c, since � � c.
However, �p has no physical significance because the motion of the wave group, not
the motion of the individual waves that make up the group, corresponds to the mo-
tion of the body, and �g � c as it should be. The fact that �p � c for de Broglie waves
therefore does not violate special relativity.

Example 3.3

An electron has a de Broglie wavelength of 2.00 pm � 2.00 � 10�12 m. Find its kinetic energy

and the phase and group velocities of its de Broglie waves.

Solution

(a) The first step is to calculate pc for the electron, which is

pc � � � 6.20 � 105 eV

� 620 keV

The rest energy of the electron is E0 � 511 keV, so

KE � E � E0 � �E2
0 � (�pc)2� � E0 � �(511 k�eV)2 �� (620�keV)2� � 511 keV

� 803 keV � 511 keV � 292 keV

(b) The electron velocity can be found from

E �

to be

� � c
1 ��� � c
1 � ����
2� � 0.771c

Hence the phase and group velocities are respectively

�p � � � 1.30c

�g � � � 0.771c

c2

�
0.771c

c2

�
�

511 keV
�
803 keV

E2
0�

E2

E0
��

�1 � �2��c2�

(4.136 � 10�15 eV 	 s)(3.00 � 108 m/s)
�����

2.00 � 10�12 m

hc
�
�

c2

�
�

�
�
k

De Broglie phase
velocity

De Broglie group
velocity
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3.5 PARTICLE DIFFRACTION

An experiment that confirms the existence of de Broglie waves

A wave effect with no analog in the behavior of Newtonian particles is diffraction. In
1927 Clinton Davisson and Lester Germer in the United States and G. P. Thomson in
England independently confirmed de Broglie’s hypothesis by demonstrating that elec-
tron beams are diffracted when they are scattered by the regular atomic arrays of crys-
tals. (All three received Nobel Prizes for their work. J. J. Thomson, G. P.’s father, had
earlier won a Nobel Prize for verifying the particle nature of the electron: the wave-
particle duality seems to have been the family business.) We shall look at the experi-
ment of Davisson and Germer because its interpretation is more direct.

Davisson and Germer were studying the scattering of electrons from a solid using
an apparatus like that sketched in Fig. 3.6. The energy of the electrons in the primary
beam, the angle at which they reach the target, and the position of the detector could
all be varied. Classical physics predicts that the scattered electrons will emerge in all
directions with only a moderate dependence of their intensity on scattering angle and
even less on the energy of the primary electrons. Using a block of nickel as the target,
Davisson and Germer verified these predictions.

In the midst of their work an accident occurred that allowed air to enter their ap-
paratus and oxidize the metal surface. To reduce the oxide to pure nickel, the target
was baked in a hot oven. After this treatment, the target was returned to the appara-
tus and the measurements resumed.

Now the results were very different. Instead of a continuous variation of scattered
electron intensity with angle, distinct maxima and minima were observed whose
positions depended upon the electron energy! Typical polar graphs of electron intensity
after the accident are shown in Fig. 3.7. The method of plotting is such that the intensity
at any angle is proportional to the distance of the curve at that angle from the point
of scattering. If the intensity were the same at all scattering angles, the curves would
be circles centered on the point of scattering.

Two questions come to mind immediately: What is the reason for this new effect?
Why did it not appear until after the nickel target was baked?

De Broglie’s hypothesis suggested that electron waves were being diffracted by the
target, much as x-rays are diffracted by planes of atoms in a crystal. This idea received
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Figure 3.6 The Davisson-Germer
experiment.
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Figure 3.7 Results of the Davisson-Germer experiment, showing how the number of scattered elec-
trons varied with the angle between the incoming beam and the crystal surface. The Bragg planes of
atoms in the crystal were not parallel to the crystal surface, so the angles of incidence and scattering
relative to one family of these planes were both 65° (see Fig. 3.8).
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support when it was realized that heating a block of nickel at high temperature causes
the many small individual crystals of which it is normally composed to form into a
single large crystal, all of whose atoms are arranged in a regular lattice.

Let us see whether we can verify that de Broglie waves are responsible for the findings
of Davisson and Germer. In a particular case, a beam of 54-eV electrons was directed
perpendicularly at the nickel target and a sharp maximum in the electron distribution
occurred at an angle of 50° with the original beam. The angles of incidence and
scattering relative to the family of Bragg planes shown in Fig. 3.8 are both 65°. The
spacing of the planes in this family, which can be measured by x-ray diffraction, is
0.091 nm. The Bragg equation for maxima in the diffraction pattern is

n � � 2d sin 
 (2.13)

Here d � 0.091 nm and 
 � 65°. For n � 1 the de Broglie wavelength � of the
diffracted electrons is

� � 2d sin 
 � (2)(0.091 nm)(sin65) � 0.165 nm

Now we use de Broglie’s formula � � h��m� to find the expected wavelength of
the electrons. The electron kinetic energy of 54 eV is small compared with its rest en-
ergy mc2 of 0.51 MeV, so we can let � � 1. Since

KE � �
1

2
� m�2

the electron momentum m� is

m� � �2mKE�

� �(2)(9.1� � 10��31 kg)(�54 eV)�(1.6 �� 10�19� J/eV)�
� 4.0 � 10�24 kg 	 m/s

The electron wavelength is therefore

� � � � 1.66 � 10�10 m � 0.166 nm

which agrees well with the observed wavelength of 0.165 nm. The Davisson-Germer
experiment thus directly verifies de Broglie’s hypothesis of the wave nature of moving
bodies.

Analyzing the Davisson-Germer experiment is actually less straightforward than in-
dicated above because the energy of an electron increases when it enters a crystal by
an amount equal to the work function of the surface. Hence the electron speeds in the
experiment were greater inside the crystal and the de Broglie wavelengths there shorter
than the values outside. Another complication arises from interference between waves
diffracted by different families of Bragg planes, which restricts the occurrence of maxima
to certain combinations of electron energy and angle of incidence rather than merely
to any combination that obeys the Bragg equation.

Electrons are not the only bodies whose wave behavior can be demonstrated. The
diffraction of neutrons and of whole atoms when scattered by suitable crystals has been
observed, and in fact neutron diffraction, like x-ray and electron diffraction, has been
used for investigating crystal structures.

6.63 � 10�34 J 	 s
���
4.0 � 10�24 kg 	 m/s

h
�
m�
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Figure 3.8 The diffraction of the
de Broglie waves by the target is
responsible for the results of
Davisson and Germer.
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3.6   PARTICLE IN A BOX

Why the energy of a trapped particle is quantized

The wave nature of a moving particle leads to some remarkable consequences when
the particle is restricted to a certain region of space instead of being able to move freely.

The simplest case is that of a particle that bounces back and forth between the walls of
a box, as in Fig. 3.9. We shall assume that the walls of the box are infinitely hard, so the
particle does not lose energy each time it strikes a wall, and that its velocity is sufficiently
small so that we can ignore relativistic considerations. Simple as it is, this model situation
requires fairly elaborate mathematics in order to be properly analyzed, as we shall learn in
Chap. 5. However, even a relatively crude treatment can reveal the essential results.

From a wave point of view, a particle trapped in a box is like a standing wave in a
string stretched between the box’s walls. In both cases the wave variable (transverse
displacement for the string, wave function 
 for the moving particle) must be 0 at
the walls, since the waves stop there. The possible de Broglie wavelengths of the par-
ticle in the box therefore are determined by the width L of the box, as in Fig. 3.10.
The longest wavelength is specified by � � 2L, the next by � � L, then � � 2L�3,
and so forth. The general formula for the permitted wavelengths is

�n � n � 1, 2, 3, . . . (3.17)

Because m� � h��, the restrictions on de Broglie wavelength � imposed by the
width of the box are equivalent to limits on the momentum of the particle and, in turn,
to limits on its kinetic energy. The kinetic energy of a particle of momentum m� is

KE � �
1

2
� m�2

� �

The permitted wavelengths are �n � 2L�n, and so, because the particle has no potential
energy in this model, the only energies it can have are

h2

�
2m�

2

(m�)2

�
2m

2L
�
n

De Broglie
wavelengths of
trapped particle
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Figure 3.9 A particle confined to
a box of width L. The particle is
assumed to move back and forth
along a straight line between the
walls of the box.

L

Figure 3.10 Wave functions of a
particle trapped in a box L wide.

λ = L

λ = 2LΨ1

Ψ2

Ψ3

L

λ = 2L
3

Neutron diffraction by a quartz crystal. The peaks represent directions in which con-
structive interference occurred. (Courtesy Frank J. Rotella and Arthur J. Schultz, Argonne
National Laboratory)
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En � n � 1, 2, 3, . . . (3.18)

Each permitted energy is called an energy level, and the integer n that specifies an
energy level En is called its quantum number.

We can draw three general conclusions from Eq. (3.18). These conclusions apply
to any particle confined to a certain region of space (even if the region does not have
a well-defined boundary), for instance an atomic electron held captive by the attraction
of the positively charged nucleus.

1 A trapped particle cannot have an arbitrary energy, as a free particle can. The fact
of its confinement leads to restrictions on its wave function that allow the particle to
have only certain specific energies and no others. Exactly what these energies are de-
pends on the mass of the particle and on the details of how it is trapped.

2 A trapped particle cannot have zero energy. Since the de Broglie wavelength of the
particle is � � h�m�, a speed of � � 0 means an infinite wavelength. But there is no
way to reconcile an infinite wavelength with a trapped particle, so such a particle must
have at least some kinetic energy. The exclusion of E � 0 for a trapped particle, like
the limitation of E to a set of discrete values, is a result with no counterpart in classi-
cal physics, where all non-negative energies, including zero, are allowed.

3 Because Planck’s constant is so small—only 6.63 � 10�34 J 	 s—quantization of en-
ergy is conspicuous only when m and L are also small. This is why we are not aware
of energy quantization in our own experience. Two examples will make this clear.

Example 3.4

An electron is in a box 0.10 nm across, which is the order of magnitude of atomic dimensions.

Find its permitted energies.

Solution

Here m � 9.1 � 10�31 kg and L � 0.10 nm � 1.0 � 10�10 m, so that the permitted electron

energies are

En � � 6.0 � 10�18n2 J

� 38n2 eV

The minimum energy the electron can have is 38 eV, corresponding to n � 1. The sequence of

energy levels continues with E2 � 152 eV, E3 � 342 eV, E4 � 608 eV, and so on (Fig. 3.11). If

such a box existed, the quantization of a trapped electron’s energy would be a prominent feature

of the system. (And indeed energy quantization is prominent in the case of an atomic electron.)

Example 3.5

A 10-g marble is in a box 10 cm across. Find its permitted energies.

Solution

With m � 10 g � 1.0 � 10�2 kg and L � 10 cm � 1.0 � 10�1 m,

En �

� 5.5 � 10�64n2 J

(n2)(6.63 � 10�34 J 	 s)2

����
(8)(1.0 � 10�2 kg)(1.0 � 10�1 m)2

(n2)(6.63 � 10�34 J 	 s)2

�����
(8)(9.1 � 10�31 kg)(1.0 � 10�10 m)2

n2h2

�
8mL2

Particle in a box
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Figure 3.11 Energy levels of an
electron confined to a box
0.1 nm wide.
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The minimum energy the marble can have is 5.5 � 10�64 J, corresponding to n � 1. A marble

with this kinetic energy has a speed of only 3.3 � 10�31 m/s and therefore cannot be experi-

mentally distinguished from a stationary marble. A reasonable speed a marble might have is, say,
�
1

3
� m/s—which corresponds to the energy level of quantum number n � 1030! The permissible

energy levels are so very close together, then, that there is no way to determine whether the

marble can take on only those energies predicted by Eq. (3.18) or any energy whatever. Hence

in the domain of everyday experience, quantum effects are imperceptible, which accounts for

the success of Newtonian mechanics in this domain.

3.7 UNCERTAINTY PRINCIPLE 1

We cannot know the future because we cannot know the present

To regard a moving particle as a wave group implies that there are fundamental limits
to the accuracy with which we can measure such “particle” properties as position and
momentum.

To make clear what is involved, let us look at the wave group of Fig. 3.3. The par-
ticle that corresponds to this wave group may be located anywhere within the group
at a given time. Of course, the probability density �
�2 is a maximum in the middle of
the group, so it is most likely to be found there. Nevertheless, we may still find the
particle anywhere that �
�2 is not actually 0.

The narrower its wave group, the more precisely a particle’s position can be speci-
fied (Fig. 3.12a). However, the wavelength of the waves in a narrow packet is not well
defined; there are not enough waves to measure � accurately. This means that since 
� � h��m�, the particle’s momentum �m� is not a precise quantity. If we make a series
of momentum measurements, we will find a broad range of values.

On the other hand, a wide wave group, such as that in Fig. 3.12b, has a clearly
defined wavelength. The momentum that corresponds to this wavelength is therefore
a precise quantity, and a series of measurements will give a narrow range of values. But
where is the particle located? The width of the group is now too great for us to be able
to say exactly where the particle is at a given time.

Thus we have the uncertainty principle:

It is impossible to know both the exact position and exact momentum of an ob-
ject at the same time.

This principle, which was discovered by Werner Heisenberg in 1927, is one of the
most significant of physical laws.

A formal analysis supports the above conclusion and enables us to put it on a quan-
titative basis. The simplest example of the formation of wave groups is that given in
Sec. 3.4, where two wave trains slightly different in angular frequency � and wave
number k were superposed to yield the series of groups shown in Fig. 3.4. A moving
body corresponds to a single wave group, not a series of them, but a single wave group
can also be thought of in terms of the superposition of trains of harmonic waves. How-
ever, an infinite number of wave trains with different frequencies, wave numbers, and
amplitudes is required for an isolated group of arbitrary shape, as in Fig. 3.13.

At a certain time t, the wave group 
(x) can be represented by the Fourier integral


(x) � ��

0
g(k) cos kx dk (3.19)
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Figure 3.12 (a) A narrow de
Broglie wave group. The position
of the particle can be precisely
determined, but the wavelength
(and hence the particle's momen-
tum) cannot be established be-
cause there are not enough waves
to measure accurately. (b) A wide
wave group. Now the wavelength
can be precisely determined but
not the position of the particle.
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where the function g(k) describes how the amplitudes of the waves that contribute to

(x) vary with wave number k. This function is called the Fourier transform of 
(x),
and it specifies the wave group just as completely as 
(x) does. Figure 3.14 contains
graphs of the Fourier transforms of a pulse and of a wave group. For comparison, the
Fourier transform of an infinite train of harmonic waves is also included. There is only
a single wave number in this case, of course.

Strictly speaking, the wave numbers needed to represent a wave group extend from
k � 0 to k � �, but for a group whose length �x is finite, the waves whose ampli-
tudes g(k) are appreciable have wave numbers that lie within a finite interval �k. As
Fig. 3.14 indicates, the narrower the group, the broader the range of wave numbers
needed to describe it, and vice versa.

The relationship between the distance �x and the wave-number spread �k depends
upon the shape of the wave group and upon how �x and �k are defined. The minimum
value of the product �x �k occurs when the envelope of the group has the familiar
bell shape of a Gaussian function. In this case the Fourier transform happens to be a
Gaussian function also. If �x and �k are taken as the standard deviations of the
respective functions 
(x) and g(k), then this minimum value is �x �k � �

1

2
�. Because

wave groups in general do not have Gaussian forms, it is more realistic to express the
relationship between �x and �k as

�x �k � �
1

2
� (3.20)
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Figure 3.14 The wave functions and Fourier transforms for (a) a pulse, (b) a wave group, (c) a wave
train, and (d) a Gaussian distribution. A brief disturbance needs a broader range of frequencies to
describe it than a disturbance of greater duration. The Fourier transform of a Gaussian function is
also a Gaussian function.
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Figure 3.13 An isolated wave group is the result of superposing an infinite number of waves with dif-
ferent wavelengths. The narrower the wave group, the greater the range of wavelengths involved. A
narrow de Broglie wave group thus means a well-defined position (�x smaller) but a poorly defined
wavelength and a large uncertainty �p in the momentum of the particle the group represents. A wide
wave group means a more precise momentum but a less precise position.
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Gaussian Function

W hen a set of measurements is made of some quantity x in which the experimental errors

are random, the result is often a Gaussian distribution whose form is the bell-shaped

curve shown in Fig. 3.15. The standard deviation � of the measurements is a measure of the

spread of x values about the mean of x0, where � equals the square root of the average of the

squared deviations from x0. If N measurements were made,

� � 
�
N

i �1

(x1� � x0)�2�
The width of a Gaussian curve at half its maximum value is 2.35�.

The Gaussian function f(x) that describes the above curve is given by

f(x) � e�(x � x0)2�2�
2

where f(x) is the probability that the value x be found in a particular measurement. Gaussian

functions occur elsewhere in physics and mathematics as well. (Gabriel Lippmann had this to

say about the Gaussian function: “Experimentalists think that it is a mathematical theorem while

mathematicians believe it to be an experimental fact.”)

The probability that a measurement lie inside a certain range of x values, say between x1 and

x2, is given by the area of the f(x) curve between these limits. This area is the integral

Px1x2
� �x2

x1

f(x) dx

An interesting questions is what fraction of a series of measurements has values within a stan-

dard deviation of the mean value x0. In this case x1 � x0 � � and x2 � x0 � �, and

Px0�� � �x0��

x0��

f(x) dx � 0.683

Hence 68.3 percent of the measurements fall in this interval, which is shaded in Fig. 3.15. A

similar calculation shows that 95.4 percent of the measurements fall within two standard

deviations of the mean value.

1
�
� �2��

Gaussian function

1
�
N

Standard deviation

Figure 3.15 A Gaussian distribution. The probability of finding a value of x is given by the Gaussian
function f(x). The mean value of x is x0, and the total width of the curve at half its maximum value
is 2.35�, where � is the standard deviation of the distribution. The total probability of finding a value
of x within a standard deviation of x0 is equal to the shaded area and is 68.3 percent.

σ

1.0

0.5

x0 x
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The de Broglie wavelength of a particle of momentum p is ��h�p and the
corresponding wave number is

k � �

In terms of wave number the particle’s momentum is therefore

p �

Hence an uncertainty �k in the wave number of the de Broglie waves associated with the
particle results in an uncertainty �p in the particle’s momentum according to the formula

�p �

Since �x �k � �
1

2
�, �k � 1�(2�x) and

�x �p � (3.21)

This equation states that the product of the uncertainty �x in the position of an ob-
ject at some instant and the uncertainty �p in its momentum component in the x di-
rection at the same instant is equal to or greater than h�4�.

If we arrange matters so that �x is small, corresponding to a narrow wave group,
then �p will be large. If we reduce �p in some way, a broad wave group is inevitable
and �x will be large.

h
�
4�

Uncertainty 
principle

h �k
�
2�

hk
�
2�

2�p
�

h

2�
�
�

Werner Heisenberg (1901–1976)

was born in Duisberg, Germany,

and studied theoretical physics at

Munich, where he also became an

enthusiastic skier and moun-

taineer. At Göttingen in 1924 as an

assistant to Max Born, Heisenberg

became uneasy about mechanical

models of the atom: “Any picture

of the atom that our imagination

is able to invent is for that very

reason defective,” he later remarked. Instead he conceived an

abstract approach using matrix algebra. In 1925, together with

Born and Pascual Jordan, Heisenberg developed this approach

into a consistent theory of quantum mechanics, but it was so

difficult to understand and apply that it had very little impact

on physics at the time. Schrödinger’s wave formulation of

quantum mechanics the following year was much more suc-

cessful; Schrödinger and others soon showed that the wave and

matrix versions of quantum mechanics were mathematically

equivalent.

In 1927, working at Bohr’s institute in Copenhagen, Heisen-

berg developed a suggestion by Wolfgang Pauli into the uncer-

tainty principle. Heisenberg initially felt that this principle was

a consequence of the disturbances inevitably produced by any

measuring process. Bohr, on the other hand, thought that the

basic cause of the uncertainties was the wave-particle duality,

so that they were built into the natural world rather than solely

the result of measurement. After much argument Heisenberg

came around to Bohr’s view. (Einstein, always skeptical about

quantum mechanics, said after a lecture by Heisenberg on the

uncertainty principle: “Marvelous, what ideas the young people

have these days. But I don’t believe a word of it.”) Heisenberg

received the Nobel Prize in 1932.

Heisenberg was one of the very few distinguished scientists

to remain in Germany during the Nazi period. In World War II

he led research there on atomic weapons, but little progress had

been made by the war’s end. Exactly why remains unclear, al-

though there is no evidence that Heisenberg, as he later claimed,

had moral qualms about creating such weapons and more or

less deliberately dragged his feet. Heisenberg recognized early

that “an explosive of unimaginable consequences” could be de-

veloped, and he and his group should have been able to have

gotten farther than they did. In fact, alarmed by the news that

Heisenberg was working on an atomic bomb, the U.S. govern-

ment sent the former Boston Red Sox catcher Moe Berg to shoot

Heisenberg during a lecture in neutral Switzerland in 1944.

Berg, sitting in the second row, found himself uncertain from

Heisenberg’s remarks about how advanced the German program

was, and kept his gun in his pocket.



These uncertainties are due not to inadequate apparatus but to the imprecise charac-
ter in nature of the quantities involved. Any instrumental or statistical uncertainties that
arise during a measurement only increase the product �x �p. Since we cannot know ex-
actly both where a particle is right now and what its momentum is, we cannot say any-
thing definite about where it will be in the future or how fast it will be moving then. We
cannot know the future for sure because we cannot know the present for sure. But our igno-
rance is not total: we can still say that the particle is more likely to be in one place than
another and that its momentum is more likely to have a certain value than another.

H-Bar

The quantity h�2� appears often in modern physics because it turns out to be the 
basic unit of angular momentum. It is therefore customary to abbreviate h�2� by the
symbol � (“h-bar”):

� � � 1.054 � 10�34 J 	 s

In the remainder of this book � is used in place of h�2�. In terms of �, the uncer-
tainty principle becomes

�x �p � (3.22)

Example 3.6

A measurement establishes the position of a proton with an accuracy of �1.00 � 10�11 m. Find

the uncertainty in the proton’s position 1.00 s later. Assume � �� c.

Solution

Let us call the uncertainty in the proton’s position �x0 at the time t � 0. The uncertainty in its

momentum at this time is therefore, from Eq. (3.22),

�p �

Since � �� c, the momentum uncertainty is �p � �(m�) � m �� and the uncertainty in the

proton’s velocity is

�� � �

The distance x the proton covers in the time t cannot be known more accurately than

�x � t �� �

Hence �x is inversely proportional to �x0: the more we know about the proton’s position at 

t � 0, the less we know about its later position at t � 0. The value of �x at t � 1.00 s is

�x �

� 3.15 � 103 m

This is 3.15 km—nearly 2 mi! What has happened is that the original wave group has spread

out to a much wider one (Fig. 3.16). This occurred because the phase velocities of the compo-

nent waves vary with wave number and a large range of wave numbers must have been present

to produce the narrow original wave group. See Fig. 3.14.

(1.054 � 10�34 J 	 s)(1.00 s)
�����
(2)(1.672 � 10�27 kg)(1.00 � 10�11 m)

�t
�
2m �x0

�
�
2m �x0

�p
�
m

�
�
2�x0

�
�
2

Uncertainty 
principle

h
�
2�
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3.8 UNCERTAINTY PRINCIPLE II

A particle approach gives the same result

The uncertainty principle can be arrived at from the point of view of the particle prop-
erties of waves as well as from the point of view of the wave properties of particles.

We might want to measure the position and momentum of an object at a certain mo-
ment. To do so, we must touch it with something that will carry the required information
back to us. That is, we must poke it with a stick, shine light on it, or perform some sim-
ilar act. The measurement process itself thus requires that the object be interfered with in
some way. If we consider such interferences in detail, we are led to the same uncertainty
principle as before even without taking into account the wave nature of moving bodies.

Suppose we look at an electron using light of wavelength �, as in Fig. 3.17. Each
photon of this light has the momentum h��. When one of these photons bounces
off the electron (which must happen if we are to “see” the electron), the electron’s
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Figure 3.16 The wave packet that corresponds to a moving packet is a composite of many individ-
ual waves, as in Fig. 3.13. The phase velocities of the individual waves vary with their wave lengths.
As a result, as the particle moves, the wave packet spreads out in space. The narrower the original
wavepacket—that is, the more precisely we know its position at that time—the more it spreads out
because it is made up of a greater span of waves with different phase velocities.

Wave packet
Classical particle

Ψ 2 t1

t2

t3

x

x

x

Ψ 2

Ψ 2

Figure 3.17 An electron cannot be observed without changing its momentum.
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original momentum will be changed. The exact amount of the change �p cannot be
predicted, but it will be of the same order of magnitude as the photon momentum
h��. Hence

�p � (3.23)

The longer the wavelength of the observing photon, the smaller the uncertainty in the
electron’s momentum.

Because light is a wave phenomenon as well as a particle phenomenon, we cannot
expect to determine the electron’s location with perfect accuracy regardless of the in-
strument used. A reasonable estimate of the minimum uncertainty in the measurement
might be one photon wavelength, so that

�x � � (3.24)

The shorter the wavelength, the smaller the uncertainty in location. However, if we use
light of short wavelength to increase the accuracy of the position measurement, there will
be a corresponding decrease in the accuracy of the momentum measurement because
the higher photon momentum will disturb the electron’s motion to a greater extent. Light
of long wavelength will give a more accurate momentum but a less accurate position.

Combining Eqs. (3.23) and (3.24) gives

�x �p � h (3.25)

This result is consistent with Eq. (3.22), �x �p � ��2.
Arguments like the preceding one, although superficially attractive, must be 

approached with caution. The argument above implies that the electron can possess a
definite position and momentum at any instant and that it is the measurement process
that introduces the indeterminacy in �x �p. On the contrary, this indeterminacy is
inherent in the nature of a moving body. The justification for the many “derivations” of
this kind is first, they show it is impossible to imagine a way around the uncertainty
principle; and second, they present a view of the principle that can be appreciated in
a more familiar context than that of wave groups.

3.9 APPLYING THE UNCERTAINTY PRINCIPLE

A useful tool, not just a negative statement

Planck’s constant h is so small that the limitations imposed by the uncertainty princi-
ple are significant only in the realm of the atom. On such a scale, however, this principle
is of great help in understanding many phenomena. It is worth keeping in mind that
the lower limit of ��2 for �x �p is rarely attained. More usually �x �p � �, or even
(as we just saw) �x �p � h.

Example 3.7

A typical atomic nucleus is about 5.0 � 10�15 m in radius. Use the uncertainty principle to

place a lower limit on the energy an electron must have if it is to be part of a nucleus.

h
�
�
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Solution

Letting �x � 5.0 � 10�5 m we have

�p � � � 1.1 � 10�20 kg 	 m/s

If this is the uncertainty in a nuclear electron’s momentum, the momentum p itself must be at

least comparable in magnitude. An electron with such a momentum has a kinetic energy KE

many times greater than its rest energy mc2. From Eq. (1.24) we see that we can let KE � pc

here to a sufficient degree of accuracy. Therefore

KE � pc � (1.1 � 10�20 kg 	 m/s)(3.0 � 108 m/s) � 3.3 � 10�12 J

Since 1 eV � 1.6 � 10�19 J, the kinetic energy of an electron must exceed 20 MeV if it is to

be inside a nucleus. Experiments show that the electrons emitted by certain unstable nuclei never

have more than a small fraction of this energy, from which we conclude that nuclei cannot con-

tain electrons. The electron an unstable nucleus may emit comes into being at the moment the

nucleus decays (see Secs. 11.3 and 12.5).

Example 3.8

A hydrogen atom is 5.3 � 10�11 m in radius. Use the uncertainty principle to estimate the min-

imum energy an electron can have in this atom.

Solution

Here we find that with � x � 5.3 � 10�11 m.

� p � � 9.9 � 10�25 kg 	 m/s

An electron whose momentum is of this order of magnitude behaves like a classical particle, and

its kinetic energy is

KE � � � 5.4 � 10�19 J

which is 3.4 eV. The kinetic energy of an electron in the lowest energy level of a hydrogen atom

is actually 13.6 eV.

Energy and Time

Another form of the uncertainty principle concerns energy and time. We might wish
to measure the energy E emitted during the time interval �t in an atomic process. If
the energy is in the form of em waves, the limited time available restricts the accuracy
with which we can determine the frequency � of the waves. Let us assume that the
minimum uncertainty in the number of waves we count in a wave group is one wave.
Since the frequency of the waves under study is equal to the number of them we count
divided by the time interval, the uncertainty �� in our frequency measurement is

�� �
1

�
�t

(9.9 � 10�25 kg 	 m/s)2

���
(2)(9.1 � 10�31 kg)

p2

�
2m

�
�
2� x

1.054 � 10�34 J 	 s
���
(2)(5.0 � 10�15 m)

�
�
2� x
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The corresponding energy uncertainty is

�E � h ��

and so

�E � or �E �t � h

A more precise calculation based on the nature of wave groups changes this result to

�E �t � (3.26)

Equation (3.26) states that the product of the uncertainty �E in an energy meas-
urement and the uncertainty �t in the time at which the measurement is made is equal
to or greater than ��2. This result can be derived in other ways as well and is a gen-
eral one not limited to em waves.

Example 3.9

An “excited” atom gives up its excess energy by emitting a photon of characteristic frequency,

as described in Chap. 4. The average period that elapses between the excitation of an atom and

the time it radiates is 1.0 � 10�8 s. Find the inherent uncertainty in the frequency of the 

photon.

Solution

The photon energy is uncertain by the amount

�E � � � 5.3 � 10�27 J

The corresponding uncertainty in the frequency of light is

�� � � 8 � 106 Hz

This is the irreducible limit to the accuracy with which we can determine the frequency of the

radiation emitted by an atom. As a result, the radiation from a group of excited atoms does not

appear with the precise frequency �. For a photon whose frequency is, say, 5.0 � 1014 Hz, 

���� � 1.6 � 10�8. In practice, other phenomena such as the doppler effect contribute more

than this to the broadening of spectral lines.

�E
�

h

1.054 � 10�34 J 	 s
���

2(1.0 � 10�8 s)

�
�
2�t

�
�
2

Uncertainties in 
energy and time

h
�
�t
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Exercises 117

E X E R C I S E S

It is only the first step that takes the effort. —Marquise du Deffand

3.1 De Broglie Waves

1. A photon and a particle have the same wavelength. Can any-

thing be said about how their linear momenta compare? About

how the photon’s energy compares with the particle’s total

energy? About how the photon’s energy compares with the

particle’s kinetic energy?

2. Find the de Broglie wavelength of (a) an electron whose speed is

1.0 � 108 m/s, and (b) an electron whose speed is 2.0 � 108 m/s.

3. Find the de Broglie wavelength of a 1.0-mg grain of sand

blown by the wind at a speed of 20 m/s.

4. Find the de Broglie wavelength of the 40-keV electrons used in

a certain electron microscope.

5. By what percentage will a nonrelativistic calculation of the

de Broglie wavelength of a 100-keV electron be in error?

6. Find the de Broglie wavelength of a 1.00-MeV proton. Is a rela-

tivistic calculation needed?

7. The atomic spacing in rock salt, NaCl, is 0.282 nm. Find the

kinetic energy (in eV) of a neutron with a de Broglie wave-

length of 0.282 nm. Is a relativistic calculation needed? Such

neutrons can be used to study crystal structure.

8. Find the kinetic energy of an electron whose de Broglie wave-

length is the same as that of a 100-keV x-ray.

9. Green light has a wavelength of about 550 nm. Through what

potential difference must an electron be accelerated to have this

wavelength?

10. Show that the de Broglie wavelength of a particle of mass m

and kinetic energy KE is given by

� �

11. Show that if the total energy of a moving particle greatly

exceeds its rest energy, its de Broglie wavelength is nearly the

same as the wavelength of a photon with the same total energy.

12. (a) Derive a relativistically correct formula that gives the 

de Broglie wavelength of a charged particle in terms of the po-

tential difference V through which it has been accelerated.

(b) What is the nonrelativistic approximation of this formula,

valid for eV �� mc2?

3.4 Phase and Group Velocities

13. An electron and a proton have the same velocity. Compare the

wavelengths and the phase and group velocities of their 

de Broglie waves.

14. An electron and a proton have the same kinetic energy.

Compare the wavelengths and the phase and group velocities of

their de Broglie waves.

hc
��
�KE(KE� � 2m�c2)�

15. Verify the statement in the text that, if the phase velocity is the

same for all wavelengths of a certain wave phenomenon (that

is, there is no dispersion), the group and phase velocities are

the same.

16. The phase velocity of ripples on a liquid surface is �2�S����,

where S is the surface tension and  the density of the liquid.

Find the group velocity of the ripples.

17. The phase velocity of ocean waves is �g��2��, where g is the

acceleration of gravity. Find the group velocity of ocean waves.

18. Find the phase and group velocities of the de Broglie waves of

an electron whose speed is 0.900c.

19. Find the phase and group velocities of the de Broglie waves of

an electron whose kinetic energy is 500 keV.

20. Show that the group velocity of a wave is given by �g �

d��d(1��).

21. (a) Show that the phase velocity of the de Broglie waves of a

particle of mass m and de Broglie wavelength � is given by

�p � c
1 � ����
2�

(b) Compare the phase and group velocities of an electron

whose de Broglie wavelength is exactly 1 � 10�13 m.

22. In his original paper, de Broglie suggested that E � h� and 

p � h��, which hold for electromagnetic waves, are also valid

for moving particles. Use these relationships to show that the

group velocity �g of a de Broglie wave group is given by dE�dp,

and with the help of Eq. (1.24), verify that �g � � for a particle

of velocity �.

3.5 Particle Diffraction

23. What effect on the scattering angle in the Davisson-Germer

experiment does increasing the electron energy have?

24. A beam of neutrons that emerges from a nuclear reactor contains

neutrons with a variety of energies. To obtain neutrons with an

energy of 0.050 eV, the beam is passed through a crystal whose

atomic planes are 0.20 nm apart. At what angles relative to the

original beam will the desired neutrons be diffracted?

25. In Sec. 3.5 it was mentioned that the energy of an electron en-

tering a crystal increases, which reduces its de Broglie wavelength.

Consider a beam of 54-eV electrons directed at a nickel target.

The potential energy of an electron that enters the target changes

by 26 eV. (a) Compare the electron speeds outside and inside the

target. (b) Compare the respective de Broglie wavelengths.

26. A beam of 50-keV electrons is directed at a crystal and

diffracted electrons are found at an angle of 50 relative to the

original beam. What is the spacing of the atomic planes of the

crystal? A relativistic calculation is needed for �.

mc�
�

h
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3.6 Particle in a Box

27. Obtain an expression for the energy levels (in MeV) of a neu-

tron confined to a one-dimensional box 1.00 � 10�14 m wide.

What is the neutron’s minimum energy? (The diameter of an

atomic nucleus is of this order of magnitude.)

28. The lowest energy possible for a certain particle trapped in a

certain box is 1.00 eV. (a) What are the next two higher ener-

gies the particle can have? (b) If the particle is an electron, how

wide is the box?

29. A proton in a one-dimensional box has an energy of 400 keV in

its first excited state. How wide is the box?

3.7 Uncertainty Principle I
3.8 Uncertainty Principle II
3.9 Applying the Uncertainty Principle

30. Discuss the prohibition of E � 0 for a particle trapped in a

box L wide in terms of the uncertainty principle. How does

the minimum momentum of such a particle compare with the

momentum uncertainty required by the uncertainty principle if

we take �x � L?

31. The atoms in a solid possess a certain minimum zero-point
energy even at 0 K, while no such restriction holds for the

molecules in an ideal gas. Use the uncertainty principle to

explain these statements.

32. Compare the uncertainties in the velocities of an electron and a

proton confined in a 1.00-nm box.

33. The position and momentum of a 1.00-keV electron are simulta-

neously determined. If its position is located to within 0.100 nm,

what is the percentage of uncertainty in its momentum?

34. (a) How much time is needed to measure the kinetic energy of

an electron whose speed is 10.0 m/s with an uncertainty of no

more than 0.100 percent? How far will the electron have

traveled in this period of time? (b) Make the same calculations

for a 1.00-g insect whose speed is the same. What do these

sets of figures indicate?

35. How accurately can the position of a proton with � �� c be

determined without giving it more than 1.00 keV of kinetic

energy?

36. (a) Find the magnitude of the momentum of a particle in a

box in its nth state. (b) The minimum change in the particle’s

momentum that a measurement can cause corresponds to a

change of �1 in the quantum number n. If �x � L, show that

�p �x � ��2.

37. A marine radar operating at a frequency of 9400 MHz emits

groups of electromagnetic waves 0.0800 �s in duration. The

time needed for the reflections of these groups to return

indicates the distance to a target. (a) Find the length of each

group and the number of waves it contains. (b) What is the

approximate minimum bandwidth (that is, spread of frequen-

cies) the radar receiver must be able to process?

38. An unstable elementary particle called the eta meson has a rest

mass of 549 MeV/c2 and a mean lifetime of 7.00 � 10�19 s.

What is the uncertainty in its rest mass?

39. The frequency of oscillation of a harmonic oscillator of mass m

and spring constant C is � � �C�m��2�. The energy of the

oscillator is E � p2�2m � C x2�2, where p is its momentum

when its displacement from the equilibrium position is x. In

classical physics the minimum energy of the oscillator is 

Emin � 0. Use the uncertainty principle to find an expression

for E in terms of x only and show that the minimum energy is

actually Emin � h��2 by setting dE�dx � 0 and solving for Emin.

40. (a) Verify that the uncertainty principle can be expressed in the

form �L �
 � ��2, where �L is the uncertainty in the angular

momentum of a particle and �
 is the uncertainty in its

angular position. (Hint: Consider a particle of mass m moving

in a circle of radius r at the speed �, for which L � m�r.)

(b) At what uncertainty in L will the angular position of a parti-

cle become completely indeterminate?
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CHAPTER 5

Quantum Mechanics

5.1 QUANTUM MECHANICS
Classical mechanics is an approximation of
quantum mechanics

5.2 THE WAVE EQUATION
It can have a variety of solutions, including
complex ones

5.3 SCHRÖDINGER’S EQUATION: 
TIME-DEPENDENT FORM

A basic physical principle that cannot be derived
from anything else

5.4 LINEARITY AND SUPERPOSITION
Wave functions add, not probabilities

5.5 EXPECTATION VALUES
How to extract information from a wave
function

5.6 OPERATORS
Another way to find expectation values

5.7 SCHRÖDINGER’S EQUATION: 
STEADY-STATE FORM

Eigenvalues and eigenfunctions

5.8 PARTICLE IN A BOX
How boundary conditions and normalization
determine wave functions

5.9 FINITE POTENTIAL WELL
The wave function penetrates the walls, which
lowers the energy levels

5.10 TUNNEL EFFECT
A particle without the energy to pass over a
potential barrier may still tunnel through it

5.11 HARMONIC OSCILLATOR
Its energy levels are evenly spaced

APPENDIX: THE TUNNEL EFFECT

Scanning tunneling micrograph of gold atoms on a carbon (graphite) substrate.

The cluster of gold atoms is about 1.5 nm across and three atoms high.



A
lthough the Bohr theory of the atom, which can be extended further than was
done in Chap. 4, is able to account for many aspects of atomic phenomena, it
has a number of severe limitations as well. First of all, it applies only to hy-

drogen and one-electron ions such as He� and Li2�—it does not even work for ordinary
helium. The Bohr theory cannot explain why certain spectral lines are more intense
than others (that is, why certain transitions between energy levels have greater
probabilities of occurrence than others). It cannot account for the observation that
many spectral lines actually consist of several separate lines whose wavelengths differ
slightly. And perhaps most important, it does not permit us to obtain what a really suc-
cessful theory of the atom should make possible: an understanding of how individual
atoms interact with one another to endow macroscopic aggregates of matter with the 
physical and chemical properties we observe.

The preceding objections to the Bohr theory are not put forward in an unfriendly
way, for the theory was one of those seminal achievements that transform scientific
thought, but rather to emphasize that a more general approach to atomic phenomena
is required. Such an approach was developed in 1925 and 1926 by Erwin Schrödinger,
Werner Heisenberg, Max Born, Paul Dirac, and others under the apt name of quantum
mechanics. “The discovery of quantum mechanics was nearly a total surprise. It de-
scribed the physical world in a way that was fundamentally new. It seemed to many
of us a miracle,” noted Eugene Wigner, one of the early workers in the field. By the
early 1930s the application of quantum mechanics to problems involving nuclei, atoms,
molecules, and matter in the solid state made it possible to understand a vast body of
data (“a large part of physics and the whole of chemistry,” according to Dirac) and—
vital for any theory—led to predictions of remarkable accuracy. Quantum mechanics
has survived every experimental test thus far of even its most unexpected conclusions.

5.1   QUANTUM MECHANICS

Classical mechanics is an approximation of quantum mechanics

The fundamental difference between classical (or Newtonian) mechanics and quantum
mechanics lies in what they describe. In classical mechanics, the future history of a par-
ticle is completely determined by its initial position and momentum together with the
forces that act upon it. In the everyday world these quantities can all be determined
well enough for the predictions of Newtonian mechanics to agree with what we find.

Quantum mechanics also arrives at relationships between observable quantities, but
the uncertainty principle suggests that the nature of an observable quantity is differ-
ent in the atomic realm. Cause and effect are still related in quantum mechanics, but
what they concern needs careful interpretation. In quantum mechanics the kind of cer-
tainty about the future characteristic of classical mechanics is impossible because the
initial state of a particle cannot be established with sufficient accuracy. As we saw in
Sec. 3.7, the more we know about the position of a particle now, the less we know
about its momentum and hence about its position later.

The quantities whose relationships quantum mechanics explores are probabilities.
Instead of asserting, for example, that the radius of the electron’s orbit in a ground-
state hydrogen atom is always exactly 5.3 � 10�11 m, as the Bohr theory does, quantum
mechanics states that this is the most probable radius. In a suitable experiment most
trials will yield a different value, either larger or smaller, but the value most likely to
be found will be 5.3 � 10�11 m.
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Quantum mechanics might seem a poor substitute for classical mechanics. However,
classical mechanics turns out to be just an approximate version of quantum mechanics.
The certainties of classical mechanics are illusory, and their apparent agreement with
experiment occurs because ordinary objects consist of so many individual atoms that
departures from average behavior are unnoticeable. Instead of two sets of physical prin-
ciples, one for the macroworld and one for the microworld, there is only the single set
included in quantum mechanics.

Wave Function

As mentioned in Chap. 3, the quantity with which quantum mechanics is concerned
is the wave function � of a body. While � itself has no physical interpretation, the
square of its absolute magnitude ���2 evaluated at a particular place at a particular time
is proportional to the probability of finding the body there at that time. The linear mo-
mentum, angular momentum, and energy of the body are other quantities that can be
established from �. The problem of quantum mechanics is to determine � for a body
when its freedom of motion is limited by the action of external forces.

Wave functions are usually complex with both real and imaginary parts. A proba-
bility, however, must be a positive real quantity. The probability density ���2 for a com-
plex � is therefore taken as the product �*� of � and its complex conjugate �*. 

The complex conjugate of any function is obtained by replacing i (���1�) by �i
wherever it appears in the function. Every complex function � can be written in the
form

Wave function � � A � iB

where A and B are real functions. The complex conjugate �* of � is

Complex conjugate �* � A � iB

and so ���2 � �*� � A2 � i2B2 � A2 � B2

since i2 � �1. Hence ���2 � �*� is always a positive real quantity, as required.

Normalization

Even before we consider the actual calculation of �, we can establish certain require-
ments it must always fulfill. For one thing, since ���2 is proportional to the probabil-
ity density P of finding the body described by �, the integral of ���2 over all space
must be finite—the body is somewhere, after all. If

��

��
���2 dV � 0

the particle does not exist, and the integral obviously cannot be � and still mean any-
thing. Furthermore, ���2 cannot be negative or complex because of the way it is de-
fined. The only possibility left is that the integral be a finite quantity if � is to describe
properly a real body.

It is usually convenient to have ���2 be equal to the probability density P of find-
ing the particle described by �, rather than merely be proportional to P. If ���2 is to
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equal P, then it must be true that

Normalization ��

��
���2 dV � 1 (5.1)

since if the particle exists somewhere at all times,

��

��
P dV � 1

A wave function that obeys Eq. (5.1) is said to be normalized. Every acceptable
wave function can be normalized by multiplying it by an appropriate constant; we shall
shortly see how this is done.

Well-Behaved Wave Functions

Besides being normalizable, � must be single-valued, since P can have only one value at
a particular place and time, and continuous. Momentum considerations (see Sec. 5.6)
require that the partial derivatives ����x, ����y, ����z be finite, continuous, and single-
valued. Only wave functions with all these properties can yield physically meaningful
results when used in calculations, so only such “well-behaved” wave functions are ad-
missible as mathematical representations of real bodies. To summarize:

1 � must be continuous and single-valued everywhere.
2 ����x, ����y, ����z must be continuous and single-valued everywhere.
3 � must be normalizable, which means that � must go to 0 as x → 	�, y → 	�,
z → 	� in order that ����2 dV over all space be a finite constant.

These rules are not always obeyed by the wave functions of particles in model
situations that only approximate actual ones. For instance, the wave functions of a par-
ticle in a box with infinitely hard walls do not have continuous derivatives at the walls,
since � � 0 outside the box (see Fig. 5.4). But in the real world, where walls are never
infinitely hard, there is no sharp change in � at the walls (see Fig. 5.7) and the de-
rivatives are continuous. Exercise 7 gives another example of a wave function that is
not well-behaved.

Given a normalized and otherwise acceptable wave function �, the probability that
the particle it describes will be found in a certain region is simply the integral of the
probability density ���2 over that region. Thus for a particle restricted to motion in the
x direction, the probability of finding it between x1 and x2 is given by

Probability Px1x2
� �x2

x1

���2 dx (5.2)

We will see examples of such calculations later in this chapter and in Chap. 6.

5.2   THE WAVE EQUATION

It can have a variety of solutions, including complex ones

Schrödinger’s equation, which is the fundamental equation of quantum mechanics in
the same sense that the second law of motion is the fundamental equation of New-
tonian mechanics, is a wave equation in the variable �.

Quantum Mechanics 163



Before we tackle Schrödinger’s equation, let us review the wave equation

Wave equation � (5.3)

which governs a wave whose variable quantity is y that propagates in the x direction
with the speed �. In the case of a wave in a stretched string, y is the displacement of
the string from the x axis; in the case of a sound wave, y is the pressure difference; in
the case of a light wave, y is either the electric or the magnetic field magnitude.
Equation (5.3) can be derived from the second law of motion for mechanical waves
and from Maxwell’s equations for electromagnetic waves.

�2y


�t2

1


�2

�2y


�x2
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Partial Derivatives

S uppose we have a function f(x, y) of two variables, x and y, and we want to know how f

varies with only one of them, say x. To find out, we differentiate f with respect to x while

treating the other variable y as a constant. The result is the partial derivative of f with respect

to x, which is written �f��x

� � 	
y�constant

The rules for ordinary differentiation hold for partial differentiation as well. For instance, if

f � cx2,

� 2cx

and so, if f � yx2,

� � 	
y�constant

� 2yx

The partial derivative of f � yx2 with respect to the other variable, y, is

� � 	
x�constant

� x2

Second order partial derivatives occur often in physics, as in the wave equation. To find

�
2f��x2, we first calculate �f��x and then differentiate again, still keeping y constant:

� � 	
For f � yx2,

� (2yx) � 2y

Similarly � (x2) � 0
�
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Solutions of the wave equation may be of many kinds, reflecting the variety of
waves that can occur—a single traveling pulse, a train of waves of constant amplitude
and wavelength, a train of superposed waves of the same amplitudes and
wavelengths, a train of superposed waves of different amplitudes and wavelengths,



x

y

v

A

y = A cos ω(t – x/v)

Figure 5.1 Waves in the xy plane traveling in the �x direction along a stretched string lying on the
x axis.

a standing wave in a string fastened at both ends, and so on. All solutions must be
of the form

y � F�t 	 	 (5.4)

where F is any function that can be differentiated. The solutions F(t � x��) represent
waves traveling in the �x direction, and the solutions F(t � x��) represent waves trav-
eling in the �x direction.

Let us consider the wave equivalent of a “free particle,” which is a particle that is
not under the influence of any forces and therefore pursues a straight path at constant
speed. This wave is described by the general solution of Eq. (5.3) for undamped (that
is, constant amplitude A), monochromatic (constant angular frequency �) harmonic
waves in the �x direction, namely

y � Ae�i�(t�x��) (5.5)

In this formula y is a complex quantity, with both real and imaginary parts.
Because

e�i� � cos � � i sin �

Eq. (5.5) can be written in the form

y � A cos � �t � 	 � iA sin � �t � 	 (5.6)

Only the real part of Eq. (5.6) [which is the same as Eq. (3.5)] has significance in the case
of waves in a stretched string. There y represents the displacement of the string from its
normal position (Fig. 5.1), and the imaginary part of Eq. (5.6) is discarded as irrelevant.

Example 5.1

Verify that Eq. (5.5) is a solution of the wave equation.

Solution

The derivative of an exponential function eu is

(eu) � eu

The partial derivative of y with respect to x (which means t is treated as a constant) from Eq. (5.5)

is therefore

� y
i�


�

�y


�x

du


dx

d


dx

x


�

x


�

x


�
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and the second partial derivative is

� y � � y

since i2 � �1. The partial derivative of y with respect to t (now holding x constant) is

� �i�y

and the second partial derivative is

� i2�2y � ��2y

Combining these results gives

�

which is Eq. (5.3). Hence Eq. (5.5) is a solution of the wave equation.

5.3   SCHRÖDINGER’S EQUATION: TIME-DEPENDENT FORM

A basic physical principle that cannot be derived from anything else

In quantum mechanics the wave function � corresponds to the wave variable y of
wave motion in general. However, �, unlike y, is not itself a measurable quantity and
may therefore be complex. For this reason we assume that � for a particle moving
freely in the �x direction is specified by

� � Ae�i�(t�x��) (5.7)

Replacing � in the above formula by 2�� and � by �� gives

� � Ae�2�i(�t�x��) (5.8)

This is convenient since we already know what � and � are in terms of the total energy
E and momentum p of the particle being described by �. Because

E � h� � 2��� and � � �

we have

Free particle � � Ae�(i��)(Et�px) (5.9)

Equation (5.9) describes the wave equivalent of an unrestricted particle of total
energy E and momentum p moving in the �x direction, just as Eq. (5.5) describes, for
example, a harmonic displacement wave moving freely along a stretched string.

The expression for the wave function � given by Eq. (5.9) is correct only for freely
moving particles. However, we are most interested in situations where the motion of
a particle is subject to various restrictions. An important concern, for example, is an
electron bound to an atom by the electric field of its nucleus. What we must now do
is obtain the fundamental differential equation for �, which we can then solve for �
in a specific situation. This equation, which is Schrödinger’s equation, can be arrived
at in various ways, but it cannot be rigorously derived from existing physical principles:
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thereby opening wide the door to the modern view of the atom

which others had only pushed ajar. By June Schrödinger had

applied wave mechanics to the harmonic oscillator, the diatomic

molecule, the hydrogen atom in an electric field, the absorption

and emission of radiation, and the scattering of radiation by

atoms and molecules. He had also shown that his wave me-

chanics was mathematically equivalent to the more abstract

Heisenberg-Born-Jordan matrix mechanics.

The significance of Schrödinger’s work was at once realized.

In 1927 he succeeded Planck at the University of Berlin but left

Germany in 1933, the year he received the Nobel Prize, when

the Nazis came to power. He was at Dublin’s Institute for Ad-

vanced Study from 1939 until his return to Austria in 1956. In

Dublin, Schrödinger became interested in biology, in particular

the mechanism of heredity. He seems to have been the first to

make definite the idea of a genetic code and to identify genes

as long molecules that carry the code in the form of variations

in how their atoms are arranged. Schrödinger’s 1944 book What

Is Life? was enormously influential, not only by what it said but

also by introducing biologists to a new way of thinking—that

of the physicist—about their subject. What Is Life? started James

Watson on his search for “the secret of the gene,” which he and

Francis Crick (a physicist) discovered in 1953 to be the struc-

ture of the DNA molecule.

the equation represents something new. What will be done here is to show one route
to the wave equation for � and then to discuss the significance of the result.

We begin by differentiating Eq. (5.9) for � twice with respect to x, which gives

� � �

p2� � ��2 (5.10)

Differentiating Eq. (5.9) once with respect to t gives

� � �

E� � � (5.11)

At speeds small compared with that of light, the total energy E of a particle is the
sum of its kinetic energy p2�2m and its potential energy U, where U is in general a
function of position x and time t:

E � � U(x, t) (5.12)

The function U represents the influence of the rest of the universe on the particle. Of
course, only a small part of the universe interacts with the particle to any extent; for
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Erwin Schrödinger (1887–1961) was

born in Vienna to an Austrian father and

a half-English mother and received his

doctorate at the university there. After

World War I, during which he served

as an artillery officer, Schrödinger had

appointments at several German

universities before becoming professor

of physics in Zurich, Switzerland. Late

in November, 1925, Schrödinger gave a

talk on de Broglie’s notion that a moving particle has a wave

character. A colleague remarked to him afterward that to deal

properly with a wave, one needs a wave equation. Schrödinger

took this to heart, and a few weeks later he was “struggling with

a new atomic theory. If only I knew more mathematics! I am very

optimistic about this thing and expect that if I can only . . . solve

it, it will be very beautiful.” (Schrödinger was not the only physicist

to find the mathematics he needed difficult; the eminent mathe-

matician David Hilbert said at about this time, “Physics is much

too hard for physicists.”)

The struggle was successful, and in January 1926 the first of

four papers on “Quantization as an Eigenvalue Problem” was

completed. In this epochal paper Schrödinger introduced the

equation that bears his name and solved it for the hydrogen atom,



168 Chapter Five

instance, in the case of the electron in a hydrogen atom, only the electric field of the
nucleus must be taken into account.

Multiplying both sides of Eq. (5.12) by the wave function � gives

E� � � U� (5.13)

Now we substitute for E� and p2� from Eqs. (5.10) and (5.11) to obtain the time-
dependent form of Schrödinger’s equation:

i� � � � U� (5.14)

In three dimensions the time-dependent form of Schrödinger’s equation is

i� � � � � � 	 � U� (5.15)

where the particle’s potential energy U is some function of x, y, z, and t.
Any restrictions that may be present on the particle’s motion will affect the potential-

energy function U. Once U is known, Schrödinger’s equation may be solved for the
wave function � of the particle, from which its probability density ���2 may be de-
termined for a specified x, y, z, t.

Validity of Schrödinger’s Equation

Schrödinger’s equation was obtained here using the wave function of a freely moving
particle (potential energy U � constant). How can we be sure it applies to the general
case of a particle subject to arbitrary forces that vary in space and time [U �

U(x, y, z, t)]? Substituting Eqs. (5.10) and (5.11) into Eq. (5.13) is really a wild leap
with no formal justification; this is true for all other ways in which Schrödinger’s equa-
tion can be arrived at, including Schrödinger’s own approach.

What we must do is postulate Schrödinger’s equation, solve it for a variety of phys-
ical situations, and compare the results of the calculations with the results of experi-
ments. If both sets of results agree, the postulate embodied in Schrödinger’s equation
is valid. If they disagree, the postulate must be discarded and some other approach
would then have to be explored. In other words,

Schrödinger’s equation cannot be derived from other basic principles of physics;
it is a basic principle in itself.

What has happened is that Schrödinger’s equation has turned out to be remarkably
accurate in predicting the results of experiments. To be sure, Eq. (5.15) can be used
only for nonrelativistic problems, and a more elaborate formulation is needed when
particle speeds near that of light are involved. But because it is in accord with experi-
ence within its range of applicability, we must consider Schrödinger’s equation as a
valid statement concerning certain aspects of the physical world.

It is worth noting that Schrödinger’s equation does not increase the number of
principles needed to describe the workings of the physical world. Newton’s second law

�2�


�z2

�2�


�y2

�2�


�x2

�2



2m

��


�t

�2�


�x2

�2



2m

��


�t

Time-dependent
Schrödinger
equation in one
dimension

p2�


2m



Figure 5.2 (a) Arrangement of double-slit experiment. (b) The electron intensity at the screen with
only slit 1 open. (c) The electron intensity at the screen with only slit 2 open. (d) The sum of the
intensities of (b) and (c). (e) The actual intensity at the screen with slits 1 and 2 both open. The wave
functions �1 and �2 add to produce the intensity at the screen, not the probability densities ��1�2

and ��2�2.
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of motion F � ma, the basic principle of classical mechanics, can be derived from
Schrödinger’s equation provided the quantities it relates are understood to be averages
rather than precise values. (Newton’s laws of motion were also not derived from any
other principles. Like Schrödinger’s equation, these laws are considered valid in their
range of applicability because of their agreement with experiment.)

5.4   LINEARITY AND SUPERPOSITION

Wave functions add, not probabilities

An important property of Schrödinger’s equation is that it is linear in the wave function
�. By this is meant that the equation has terms that contain � and its derivatives but
no terms independent of � or that involve higher powers of � or its derivatives. As
a result, a linear combination of solutions of Schrödinger’s equation for a given system
is also itself a solution. If �1 and �2 are two solutions (that is, two wave functions
that satisfy the equation), then

� � a1�1 � a2�2

is also a solution, where a1 and a2 are constants (see Exercise 8). Thus the wave func-
tions �1 and �2 obey the superposition principle that other waves do (see Sec. 2.1)
and we conclude that interference effects can occur for wave functions just as they can
for light, sound, water, and electromagnetic waves. In fact, the discussions of Secs. 3.4
and 3.7 assumed that de Broglie waves are subject to the superposition principle.

Let us apply the superposition principle to the diffraction of an electron beam. Fig-
ure 5.2a shows a pair of slits through which a parallel beam of monoenergetic elec-
trons pass on their way to a viewing screen. If slit 1 only is open, the result is the
intensity variation shown in Fig. 5.2b that corresponds to the probability density

P1 � ��1�2 � �1
*�1

If slit 2 only is open, as in Fig. 5.2c, the corresponding probability density is

P2 � ��2�2 � �2
*�2

We might suppose that opening both slits would give an electron intensity variation
described by P1 � P2, as in Fig. 5.2d. However, this is not the case because in quantum
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mechanics wave functions add, not probabilities. Instead the result with both slits open
is as shown in Fig. 5.2e, the same pattern of alternating maxima and minima that oc-
curs when a beam of monochromatic light passes through the double slit of Fig. 2.4.

The diffraction pattern of Fig. 5.2e arises from the superposition � of the wave
functions �1 and �2 of the electrons that have passed through slits 1 and 2:

� � �1 � �2

The probability density at the screen is therefore

P � ���2 � ��1 � �2�2 � (�1
* � �2

*)(�1 � �2)

� �1
*�1 � �2

*�2 � �1
*�2 � �2

*�1

� P1 � P2 � �1
*�2 � �2

*�1

The two terms at the right of this equation represent the difference between Fig. 5.2d and
e and are responsible for the oscillations of the electron intensity at the screen. In Sec. 6.8
a similar calculation will be used to investigate why a hydrogen atom emits radiation when
it undergoes a transition from one quantum state to another of lower energy.

5.5 EXPECTATION VALUES

How to extract information from a wave function

Once Schrödinger’s equation has been solved for a particle in a given physical situa-
tion, the resulting wave function �(x, y, z, t) contains all the information about the
particle that is permitted by the uncertainty principle. Except for those variables that
are quantized this information is in the form of probabilities and not specific numbers.

As an example, let us calculate the expectation value 
x� of the position of a
particle confined to the x axis that is described by the wave function �(x, t). This
is the value of x we would obtain if we measured the positions of a great many
particles described by the same wave function at some instant t and then averaged
the results.

To make the procedure clear, we first answer a slightly different question: What is
the average position x� of a number of identical particles distributed along the x axis in
such a way that there are N1 particles at x1, N2 particles at x2, and so on? The average
position in this case is the same as the center of mass of the distribution, and so

x� � � (5.16)

When we are dealing with a single particle, we must replace the number Ni of
particles at xi by the probability Pi that the particle be found in an interval dx at xi.
This probability is

Pi � ��i�2 dx (5.17)

where �i is the particle wave function evaluated at x � xi. Making this substitution
and changing the summations to integrals, we see that the expectation value of the

�Nixi


�Ni

N1x1 � N2x2 � N3x3 � . . .





N1 � N2 � N3 � . . .
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position of the single particle is

(5.18)

If � is a normalized wave function, the denominator of Eq. (5.18) equals the prob-
ability that the particle exists somewhere between x � �� and x � � and therefore
has the value 1. In this case


x� � ��

��
x���2 dx (5.19)

Example 5.2

A particle limited to the x axis has the wave function � � ax between x � 0 and x � 1; � � 0

elsewhere. (a) Find the probability that the particle can be found between x � 0.45 and x �

0.55. (b) Find the expectation value 
x� of the particle’s position.

Solution

(a) The probability is

�x2

x1

���2 dx � a2 �0.55

0.45
x2dx � a2  �

0.55

0.45

� 0.0251a2

(b) The expectation value is


x� � �1

0
x���2 dx � a2 �1

0
x3dx � a2 �

1

0
�

The same procedure as that followed above can be used to obtain the expectation
value 
G(x)� of any quantity—for instance, potential energy U(x)—that is a function of
the position x of a particle described by a wave function �. The result is

Expectation value 
G(x)� � ��

��
G(x)���2 dx (5.20)

The expectation value 
p� for momentum cannot be calculated this way because,
according to the uncertainty principles, no such function as p(x) can exist. If we specify
x, so that � x � 0, we cannot specify a corresponding p since � x �p  ��2. The same
problem occurs for the expectation value 
E� for energy because �E� t  ��2 means
that, if we specify t, the function E(t) is impossible. In Sec. 5.6 we will see how 
p�
and 
E� can be determined.

In classical physics no such limitation occurs, because the uncertainty principle can
be neglected in the macroworld. When we apply the second law of motion to the
motion of a body subject to various forces, we expect to get p(x, t) and E(x, t) from
the solution as well as x(t). Solving a problem in classical mechanics gives us the en-
tire future course of the body’s motion. In quantum physics, on the other hand, all we
get directly by applying Schrödinger’s equation to the motion of a particle is the wave
function �, and the future course of the particle’s motion—like its initial state—is a
matter of probabilities instead of certainties.
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for position
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x� � ___________

��
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���2 dx
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5.6 OPERATORS

Another way to find expectation values

A hint as to the proper way to evaluate 
p� and 
E� comes from differentiating the free-
particle wave function � � Ae�(i��)(Et�px) with respect to x and to t. We find that

� p�

� � E�

which can be written in the suggestive forms

p� � � (5.21)

E� � i� � (5.22)

Evidently the dynamical quantity p in some sense corresponds to the differential
operator (��i) ���x and the dynamical quantity E similarly corresponds to the differ-
ential operator i� ���t.

An operator tells us what operation to carry out on the quantity that follows it.
Thus the operator i� ���t instructs us to take the partial derivative of what comes after
it with respect to t and multiply the result by i�. Equation (5.22) was on the postmark
used to cancel the Austrian postage stamp issued to commemorate the 100th
anniversary of Schrödinger’s birth.

It is customary to denote operators by using a caret, so that p̂ is the operator that
corresponds to momentum p and Ê is the operator that corresponds to total energy E.
From Eqs. (5.21) and (5.22) these operators are

p̂ � (5.23)

Ê � i� (5.24)

Though we have only shown that the correspondences expressed in Eqs. (5.23)
and (5.24) hold for free particles, they are entirely general results whose validity is
the same as that of Schrödinger’s equation. To support this statement, we can re-
place the equation E � KE � U for the total energy of a particle with the operator
equation

Ê � K Ê � Û (5.25)

The operator Û is just U (�). The kinetic energy KE is given in terms of momen-
tum p by

KE �
p2
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and so we have

K Ê � � � 	
2

� � (5.26)

Equation (5.25) therefore reads

i� � � � U (5.27)

Now we multiply the identity � � � by Eq. (5.27) and obtain

i� � � � U�

which is Schrödinger’s equation. Postulating Eqs. (5.23) and (5.24) is equivalent to
postulating Schrödinger’s equation.

Operators and Expectation Values

Because p and E can be replaced by their corresponding operators in an equation, we
can use these operators to obtain expectation values for p and E. Thus the expectation
value for p is


p� � ��

��
�*p̂� dx � ��

��
�*� 	� dx � ��

��
�* dx (5.28)

and the expectation value for E is


E� � ��

�*Ê� dx � ��

�*�i� 	� dx � i� ��

�* dx (5.29)

Both Eqs. (5.28) and (5.29) can be evaluated for any acceptable wave function � (x, t).
Let us see why expectation values involving operators have to be expressed in the

form


p� � ��

��
�*p̂� dx

The other alternatives are

��

��
p̂�*� dx � ��

��
(�*�) dx � �*��

�

��

� 0

since �* and � must be 0 at x � 	�, and

��

��
�*� p̂ dx � ��

��
�*� dx

which makes no sense. In the case of algebraic quantities such as x and V(x), the order
of factors in the integrand is unimportant, but when differential operators are involved,
the correct order of factors must be observed.
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Every observable quantity G characteristic of a physical system may be represented
by a suitable quantum-mechanical operator  Ĝ. To obtain this operator, we express G
in terms of x and p and then replace p by (��i) ���x. If the wave function � of the
system is known, the expectation value of G(x, p) is


G(x, p)� � ��

�� 
�*Ĝ� dx (5.30)

In this way all the information about a system that is permitted by the uncertainty
principle can be obtained from its wave function �.

5.7   SCHRÖDINGER’S EQUATION: STEADY-STATE FORM

Eigenvalues and eigenfunctions

In a great many situations the potential energy of a particle does not depend on time
explicitly; the forces that act on it, and hence U, vary with the position of the particle
only. When this is true, Schrödinger’s equation may be simplified by removing all
reference to t.

We begin by noting that the one-dimensional wave function � of an unrestricted
particle may be written

� � Ae�(i��)(Et�px) � Ae�(iE��)te�(ip��)x � 	e�(iE��)t (5.31)

Evidently � is the product of a time-dependent function e�(iE��)t and a position-
dependent function 	. As it happens, the time variations of all wave functions of
particles acted on by forces independent of time have the same form as that of an
unrestricted particle. Substituting the � of Eq. (5.31) into the time-dependent form of
Schrödinger’s equation, we find that

E	e�(iE��)t � � e�(iE��)t � U	e�(iE��)t

Dividing through by the common exponential factor gives

� (E � U)	 � 0 (5.32)

Equation (5.32) is the steady-state form of Schrödinger’s equation. In three dimen-
sions it is

� � � (E � U)	 � 0 (5.33)

An important property of Schrödinger’s steady-state equation is that, if it has one
or more solutions for a given system, each of these wave functions corresponds to a
specific value of the energy E. Thus energy quantization appears in wave mechanics as
a natural element of the theory, and energy quantization in the physical world is re-
vealed as a universal phenomenon characteristic of all stable systems.
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A familiar and quite close analogy to the manner in which energy quantization occurs
in solutions of Schrödinger’s equation is with standing waves in a stretched string of
length L that is fixed at both ends. Here, instead of a single wave propagating indefi-
nitely in one direction, waves are traveling in both the �x and �x directions simul-
taneously. These waves are subject to the condition (called a boundary condition) that
the displacement y always be zero at both ends of the string. An acceptable function
y(x, t) for the displacement must, with its derivatives (except at the ends), be as well-
behaved as 	 and its derivatives—that is, be continuous, finite, and single-valued. In
this case y must be real, not complex, as it represents a directly measurable quantity.
The only solutions of the wave equation, Eq. (5.3), that are in accord with these various
limitations are those in which the wavelengths are given by

�n � n � 0, 1, 2, 3, . . .

as shown in Fig. 5.3. It is the combination of the wave equation and the restrictions
placed on the nature of its solution that leads us to conclude that y(x, t) can exist only
for certain wavelengths �n.

Eigenvalues and Eigenfunctions

The values of energy En for which Schrödinger’s steady-state equation can be solved
are called eigenvalues and the corresponding wave functions 	n are called eigen-
functions. (These terms come from the German Eigenwert, meaning “proper or char-
acteristic value,” and Eigenfunktion, “proper or characteristic function.”) The discrete
energy levels of the hydrogen atom

En � � � 	 n � 1, 2, 3, . . . 

are an example of a set of eigenvalues. We shall see in Chap. 6 why these particular
values of E are the only ones that yield acceptable wave functions for the electron in
the hydrogen atom.

An important example of a dynamical variable other than total energy that is found
to be quantized in stable systems is angular momentum L. In the case of the hydro-
gen atom, we shall find that the eigenvalues of the magnitude of the total angular
momentum are specified by

L � �l(l � 1�)�  � l � 0, 1, 2, . . . , (n � 1)

Of course, a dynamical variable G may not be quantized. In this case measurements
of G made on a number of identical systems will not yield a unique result but instead
a spread of values whose average is the expectation value


G� � ��

��
G�	�2 dx

In the hydrogen atom, the electron’s position is not quantized, for instance, so that we
must think of the electron as being present in the vicinity of the nucleus with a cer-
tain probability �	�2 per unit volume but with no predictable position or even orbit in
the classical sense. This probabilistic statement does not conflict with the fact that
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experiments performed on hydrogen atoms always show that each one contains a whole
electron, not 27 percent of an electron in a certain region and 73 percent elsewhere.
The probability is one of finding the electron, and although this probability is smeared
out in space, the electron itself is not.

Operators and Eigenvalues

The condition that a certain dynamical variable G be restricted to the discrete values
Gn—in other words, that G be quantized—is that the wave functions 	n of the system
be such that

Eigenvalue equation Ĝ	n � Gn	n (5.34)

where Ĝ is the operator that corresponds to G and each Gn is a real number. When
Eq. (5.34) holds for the wave functions of a system, it is a fundamental postulate of
quantum mechanics that any measurement of G can only yield one of the values Gn.
If measurements of G are made on a number of identical systems all in states described
by the particular eigenfunction �k, each measurement will yield the single value Gk.

Example 5.3

An eigenfunction of the operator d2�dx2 is 	 � e2x. Find the corresponding eigenvalue.

Solution

Here Ĝ � d2�dx2, so

Ĝ	 � (e2x) �  (e2x)� � (2e2x) � 4e2x

But e2x � 	, so

Ĝ	 � 4	

From Eq. (5.34) we see that the eigenvalue G here is just G � 4.

In view of Eqs. (5.25) and (5.26) the total-energy operator Ê of Eq. (5.24) can also
be written as

Ĥ � � � U (5.35)

and is called the Hamiltonian operator because it is reminiscent of the Hamiltonian
function in advanced classical mechanics, which is an expression for the total energy
of a system in terms of coordinates and momenta only. Evidently the steady-state
Schrödinger equation can be written simply as

Ĥ	n � En	n (5.36)
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so we can say that the various En are the eigenvalues of the Hamiltonian operator Ĥ.
This kind of association between eigenvalues and quantum-mechanical operators is quite
general. Table 5.1 lists the operators that correspond to various observable quantities.

5.8   PARTICLE IN A BOX

How boundary conditions and normalization determine wave functions

To solve Schrödinger’s equation, even in its simpler steady-state form, usually requires
elaborate mathematical techniques. For this reason the study of quantum mechanics
has traditionally been reserved for advanced students who have the required profi-
ciency in mathematics. However, since quantum mechanics is the theoretical structure
whose results are closest to experimental reality, we must explore its methods and ap-
plications to understand modern physics. As we shall see, even a modest mathemati-
cal background is enough for us to follow the trains of thought that have led quantum
mechanics to its greatest achievements.

The simplest quantum-mechanical problem is that of a particle trapped in a box
with infinitely hard walls. In Sec. 3.6 we saw how a quite simple argument yields the
energy levels of the system. Let us now tackle the same problem in a more formal way,
which will give us the wave function 	n that corresponds to each energy level.

We may specify the particle’s motion by saying that it is restricted to traveling along
the x axis between x � 0 and x � L by infintely hard walls. A particle does not lose
energy when it collides with such walls, so that its total energy stays constant. From a
formal point of view the potential energy U of the particle is infinite on both sides of
the box, while U is a constant—say 0 for convenience—on the inside (Fig. 5.4). Because
the particle cannot have an infinite amount of energy, it cannot exist outside the box,
and so its wave function 	 is 0 for x � 0 and x  L. Our task is to find what 	 is
within the box, namely, between x � 0 and x � L.

Within the box Schrödinger’s equation becomes

� E	 � 0 (5.37)
2m
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Table 5.1 Operators Associated with Various 
Observable Quantities

Quantity Operator

Position, x x

Linear momentum, p

Potential energy, U(x) U(x)

Kinetic energy, KE � �

Total energy, E i�

Total energy (Hamiltonian form), H � � U(x)
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Figure 5.4 A square potential well
with infinitely high barriers at
each end corresponds to a box
with infinitely hard walls.



since U � 0 there. (The total derivative d2	�dx2 is the same as the partial derivative
�2	��x2 because 	 is a function only of x in this problem.) Equation (5.37) has the
solution

	 � A sin x � B cos x (5.38)

which we can verify by substitution back into Eq. (5.37). A and B are constants to be
evaluated.

This solution is subject to the boundary conditions that 	 � 0 for x � 0 and for
x � L. Since cos 0 � 1, the second term cannot describe the particle because it does
not vanish at x � 0. Hence we conclude that B � 0. Since sin 0 � 0, the sine term
always yields 	 � 0 at x � 0, as required, but 	 will be 0 at x � L only when

L � n� n � 1, 2, 3, . . . (5.39)

This result comes about because the sines of the angles �, 2�, 3�, . . . are all 0.
From Eq. (5.39) it is clear that the energy of the particle can have only certain val-

ues, which are the eigenvalues mentioned in the previous section. These eigenvalues,
constituting the energy levels of the system, are found by solving Eq. (5.39) for En,
which gives

Particle in a box En � n � 1, 2, 3, . . . (5.40)

Equation (5.40) is the same as Eq. (3.18) and has the same interpretation [see the
discussion that follows Eq. (3.18) in Sec. 3.6].

Wave Functions

The wave functions of a particle in a box whose energies are En are, from Eq. (5.38)
with B � 0,

	n � A sin x (5.41)

Substituting Eq. (5.40) for En gives

	n � A sin (5.42)

for the eigenfunctions corresponding to the energy eigenvalues En.
It is easy to verify that these eigenfunctions meet all the requirements discussed in

Sec. 5.1: for each quantum number n, 	n is a finite, single-valued function of x, and
	n and �	n��x are continuous (except at the ends of the box). Furthermore, the integral
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of �	n�2 over all space is finite, as we can see by integrating �	n�2 dx from x � 0 to 
x � L (since the particle is confined within these limits). With the help of the 
trigonometric identity sin2 � � 


1

2

 (1 � cos 2�) we find that

��

��
�	n�2 dx � �L

0
�	n�2 dx � A2 �L

0 
sin2 � 	 dx

� �L

0
dx � �L

0
cos � 	 dx�

� x � � 	 sin �
L

0

� A2� 	 (5.43)

To normalize 	 we must assign a value to A such that �	n�2 dx is equal to the prob-
ability P dx of finding the particle between x and x � dx, rather than merely propor-
tional to P dx. If �	n�2 dx is to equal P dx, then it must be true that

��

��
�	n�2 dx � 1 (5.44)

Comparing Eqs. (5.43) and (5.44), we see that the wave functions of a particle in a
box are normalized if

A � �� (5.45)

The normalized wave functions of the particle are therefore

Particle in a box 	n � �� sin n � 1, 2, 3, . . . (5.46)

The normalized wave functions 	1, 	2, and 	3 together with the probability densities
�	1�2, �	2�2, and �	3�2 are plotted in Fig. 5.5. Although 	n may be negative as well as
positive, �	n�2 is never negative and, since 	n is normalized, its value at a given x is
equal to the probability density of finding the particle there. In every case �	n�2 � 0 at
x � 0 and x � L, the boundaries of the box.

At a particular place in the box the probability of the particle being present may be
very different for different quantum numbers. For instance, �	1�2 has its maximum
value of 2�L in the middle of the box, while �	2�2 � 0 there. A particle in the lowest
energy level of n � 1 is most likely to be in the middle of the box, while a particle in
the next higher state of n � 2 is never there! Classical physics, of course, suggests the
same probability for the particle being anywhere in the box.

The wave functions shown in Fig. 5.5 resemble the possible vibrations of a string
fixed at both ends, such as those of the stretched string of Fig. 5.2. This follows from
the fact that waves in a stretched string and the wave representing a moving particle
are described by equations of the same form, so that when identical restrictions are
placed upon each kind of wave, the formal results are identical.
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Figure 5.5 Wave functions and
probability densities of a particle
confined to a box with rigid walls.
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Example 5.4

Find the probability that a particle trapped in a box L wide can be found between 0.45L and

0.55L for the ground and first excited states.

Solution

This part of the box is one-tenth of the box’s width and is centered on the middle of the box

(Fig. 5.6). Classically we would expect the particle to be in this region 10 percent of the time.

Quantum mechanics gives quite different predictions that depend on the quantum number of

the particle’s state. From Eqs. (5.2) and (5.46) the probability of finding the particle between x1

and x2 when it is in the nth state is

Px1,x2
� � x

2

x1

��n�2 dx � � x
2

x1

sin2
dx

� � � sin �
x2

x1

Here x1 � 0.45L and x2 � 0.55L. For the ground state, which corresponds to n � 1, we have

Px1,x2
� 0.198 � 19.8 percent

This is about twice the classical probability. For the first excited state, which corresponds to 

n � 2, we have

Px1,x2
� 0.0065 � 0.65 percent

This low figure is consistent with the probability density of ��n�2 � 0 at x � 0.5L.
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Figure 5.6 The probability Px1,x2
of finding a particle in the box of Fig. 5.5 between x1 � 0.45L and

x2 � 0.55L is equal to the area under the ���2 curves between these limits.
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Example 5.5

Find the expectation value 
x� of the position of a particle trapped in a box L wide.

Solution

From Eqs. (5.19) and (5.46) we have


x� � ��

��

x�	�2 dx � �L

0
x sin2 dx

�  � � �
L

0

Since sin n� � 0, cos 2n� � 1, and cos 0 � 1, for all the values of n the expectation value of

x is


x� � � 	 �

This result means that the average position of the particle is the middle of the box in all quan-

tum states. There is no conflict with the fact that �	�2 � 0 at L�2 in the n � 2, 4, 6, . . . states

because 
x� is an average, not a probability, and it reflects the symmetry of �	�2 about the middle

of the box.

Momentum

Finding the momentum of a particle trapped in a one-dimensional box is not as straight-
forward as finding 
x�. Here

	* � 	n � �� sin

� �� cos

and so, from Eq. (5.30),


p� � ��

��
	*p̂	 dx � ��

��
	* � 	 	 dx

� �L

0
sin cos dx

We note that

� sin ax cos ax dx � sin2 ax
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With a � n��L we have


p� � sin2 �
L

0

� 0

since sin2 0 � sin2 n� � 0 n � 1, 2, 3, . . .

The expectation value 
p� of the particle’s momentum is 0.
At first glance this conclusion seems strange. After all, E � p2�2m, and so we would

anticipate that

pn � 	 �2mEn� � 	 (5.47)

The 	 sign provides the explanation: The particle is moving back and forth, and so
its average momentum for any value of n is

pav � � 0

which is the expectation value.
According to Eq. (5.47) there should be two momentum eigenfunctions for every

energy eigenfunction, corresponding to the two possible directions of motion. The gen-
eral procedure for finding the eigenvalues of a quantum-mechanical operator, here p̂,
is to start from the eigenvalue equation

p̂	n � pn	n (5.48)

where each pn is a real number. This equation holds only when the wave functions 	n

are eigenfunctions of the momentum operator p̂, which here is

p̂ �

We can see at once that the energy eigenfunctions

	n � �� sin

are not also momentum eigenfunctions, because

��� sin 	 � �� cos � pn	n

To find the correct momentum eigenfunctions, we note that

sin � � � ei�
� e�i�1
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Hence each energy eigenfunction can be expressed as a linear combination of the two
wave functions

	n
� � ��ein�x�L (5.49)

	n
� � ��e�in�x�L (5.50)

Inserting the first of these wave functions in the eigenvalue equation, Eq. (5.48), we
have

p̂	n
� � pn

�	n
�

	n
� � �� ein�x�L � 	n

� � pn
�	n

�

so that pn
� � � (5.51)

Similarly the wave function 	�
n leads to the momentum eigenvalues

pn
� � � (5.52)

We conclude that 	n
� and 	n

� are indeed the momentum eigenfunctions for a parti-
cle in a box, and that Eq. (5.47) correctly states the corresponding momentum
eigenvalues.

5.9   FINITE POTENTIAL WELL

The wave function penetrates the walls, which lowers the energy levels

Potential energies are never infinite in the real world, and the box with infinitely hard
walls of the previous section has no physical counterpart. However, potential wells
with barriers of finite height certainly do exist. Let us see what the wave functions and
energy levels of a particle in such a well are.

Figure 5.7 shows a potential well with square corners that is U high and L wide
and contains a particle whose energy E is less than U. According to classical
mechanics, when the particle strikes the sides of the well, it bounces off without
entering regions I and III. In quantum mechanics, the particle also bounces back
and forth, but now it has a certain probability of penetrating into regions I and III
even though E � U.

In regions I and III Schrödinger’s steady-state equation is

� (E � U)	 � 0
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Figure 5.7 A square potential well
with finite barriers. The energy E
of the trapped particle is less than
the height U of the barriers.



which we can rewrite in the more convenient form

� a2	 � 0 (5.53)

where

a � (5.54)

The solutions to Eq. (5.53) are real exponentials:

	I � Ceax � De�ax (5.55)

	III � Feax � Ge�ax (5.56)

Both 	I and 	III must be finite everywhere. Since e�ax → � as x → �� and eax → �
as x → �, the coefficients D and F must therefore be 0. Hence we have

	I � Ceax (5.57)

	III � Ge�ax (5.58)

These wave functions decrease exponentially inside the barriers at the sides of the well.
Within the well Schrödinger’s equation is the same as Eq. (5.37) and its solution is

again

	II � A sin x � B cos x (5.59)

In the case of a well with infinitely high barriers, we found that B � 0 in order that
	 � 0 at x � 0 and x � L. Here, however, 	II � C at x � 0 and 	II � G at x � L,
so both the sine and cosine solutions of Eq. (5.59) are possible.

For either solution, both 	 and d	�dx must be continuous at x � 0 and x � L: the
wave functions inside and outside each side of the well must not only have the same
value where they join but also the same slopes, so they match up perfectly. When these
boundary conditions are taken into account, the result is that exact matching only oc-
curs for certain specific values En of the particle energy. The complete wave functions
and their probability densities are shown in Fig. 5.8.

Because the wavelengths that fit into the well are longer than for an infinite well of
the same width (see Fig. 5.5), the corresponding particle momenta are lower (we re-
call that � � h�p). Hence the energy levels En are lower for each n than they are for a
particle in an infinite well.

5.10   TUNNEL EFFECT

A particle without the energy to pass over a potential barrier may still
tunnel through it

Although the walls of the potential well of Fig. 5.7 were of finite height, they were
assumed to be infinitely thick. As a result the particle was trapped forever even though
it could penetrate the walls. We next look at the situation of a particle that strikes a
potential barrier of height U, again with E � U, but here the barrier has a finite width
(Fig. 5.9). What we will find is that the particle has a certain probability—not
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x � L
d2	


dx2

184 Chapter Five

x = 0 x = L

	1

	2

	3

x = 0 x = L

|	3|2

|	2|2

|	1|2

Figure 5.8 Wave functions and
probability densities of a particle
in a finite potential well. The
particle has a certain probability
of being found outside the wall.
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necessarily great, but not zero either—of passing through the barrier and emerging
on the other side. The particle lacks the energy to go over the top of the barrier, but
it can nevertheless tunnel through it, so to speak. Not surprisingly, the higher the
barrier and the wider it is, the less the chance that the particle can get through.

The tunnel effect actually occurs, notably in the case of the alpha particles emit-
ted by certain radioactive nuclei. As we shall learn in Chap. 12, an alpha particle whose
kinetic energy is only a few MeV is able to escape from a nucleus whose potential wall
is perhaps 25 MeV high. The probability of escape is so small that the alpha particle
might have to strike the wall 1038 or more times before it emerges, but sooner or later
it does get out. Tunneling also occurs in the operation of certain semiconductor diodes
(Sec. 10.7) in which electrons pass through potential barriers even though their kinetic
energies are smaller than the barrier heights.

Let us consider a beam of identical particles all of which have the kinetic energy E.
The beam is incident from the left on a potential barrier of height U and width L, as
in Fig. 5.9. On both sides of the barrier U � 0, which means that no forces act on the
particles there. The wave function �I� represents the incoming particles moving to the
right and �I� represents the reflected particles moving to the left; �III represents the
transmitted particles moving to the right. The wave function �II represents the parti-
cles inside the barrier, some of which end up in region III while the others return to
region I. The transmission probability T for a particle to pass through the barrier is
equal to the fraction of the incident beam that gets through the barrier. This proba-
bility is calculated in the Appendix to this chapter. Its approximate value is given by

T � e�2k2L (5.60)

where

k2 � (5.61)

and L is the width of the barrier.

�2m(U�� E)�
��

�

Approximate
transmission
probability

x = 0 x = L

I II III

�I+

�I–

�ΙΙI+

ψII

Energy

E

U

x

Figure 5.9 When a particle of energy E � U approaches a potential barrier, according to classical
mechanics the particle must be reflected. In quantum mechanics, the de Broglie waves that correspond
to the particle are partly reflected and partly transmitted, which means that the particle has a finite
chance of penetrating the barrier.



Example 5.6

Electrons with energies of 1.0 eV and 2.0 eV are incident on a barrier 10.0 eV high and 0.50 nm

wide. (a) Find their respective transmission probabilities. (b) How are these affected if the barrier

is doubled in width?

Solution

(a) For the 1.0-eV electrons

k2 �

�

� 1.6 � 1010 m�1

Since L � 0.50 nm � 5.0 � 10�10 m, 2k2L � (2)(1.6 � 1010 m�1)(5.0 � 10�10 m) � 16,

and the approximate transmission probability is

T1 � e�2k2L � e�16 � 1.1 � 10�7

One 1.0-eV electron out of 8.9 million can tunnel through the 10-eV barrier on the average. For

the 2.0-eV electrons a similar calculation gives T2 � 2.4 � 10�7. These electrons are over twice

as likely to tunnel through the barrier.

(b) If the barrier is doubled in width to 1.0 nm, the transmission probabilities become

T�1 � 1.3 � 10�14 T�2 � 5.1 � 10�14

Evidently T is more sensitive to the width of the barrier than to the particle energy here.

�(2)(9.1� � 10��31 kg)[�(10.0 �� 1.0) e�V](1.6� � 10��19 J/eV�)�









1.054 � 10�34 J � s

�2m(U�� E)�




�
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Scanning Tunneling Microscope

T he ability of electrons to tunnel through a potential barner is used in an ingenious way in

the scanning tunneling microscope (STM) to study surfaces on an atomic scale of size.

The STM was invented in 1981 by Gert Binning and Heinrich Rohrer, who shared the 1986

Nobel Prize in physics with Ernst Ruska, the inventor of the electron microscope. In an STM, a

metal probe with a point so fine that its tip is a single atom is brought close to the surface of a

conducting or semiconducting material. Normally even the most loosely bound electrons in an

atom on a surface need several electron-volts of energy to escape—this is the work function

discussed in Chap. 2 in connection with the photoelectric effect. However, when a voltage of

only 10 mV or so is applied between the probe and the surface, electrons can tunnel across the

gap between them if the gap is small enough, a nanometer or two.

According to Eq. (5.60) the electron transmission probability is proportional to e�L, where

L is the gap width, so even a small change in L (as little as 0.01 nm, less than a twentieth the

diameter of most atoms) means a detectable change in the tunneling current. What is done is

to move the probe across the surface in a series of closely spaced back-and-forth scans in about

the same way an electron beam traces out an image on the screen of a television picture tube.

The height of the probe is continually adjusted to give a constant tunneling current, and the ad-

justments are recorded so that a map of surface height versus position is built up. Such a map

is able to resolve individual atoms on a surface.

How can the position of the probe be controlled precisely enough to reveal the outlines of

individual atoms? The thickness of certain ceramics changes when a voltage is applied across

them, a property called piezoelectricity. The changes might be several tenths of a nanometer

per volt. In an STM, piezoelectric controls move the probe in x and y directions across a surface

and in the z direction perpendicular to the surface.
The tungsten probe of a scanning
tunneling microscope.
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5.11   HARMONIC OSCILLATOR

Its energy levels are evenly spaced

Harmonic motion takes place when a system of some kind vibrates about an equilib-
rium configuration. The system may be an object supported by a spring or floating in
a liquid, a diatomic molecule, an atom in a crystal lattice—there are countless examples
on all scales of size. The condition for harmonic motion is the presence of a restoring
force that acts to return the system to its equilibrium configuration when it is disturbed.
The inertia of the masses involved causes them to overshoot equilibrium, and the system
oscillates indefinitely if no energy is lost.

In the special case of simple harmonic motion, the restoring force F on a particle
of mass m is linear; that is, F is proportional to the particle’s displacement x from its
equilibrium position and in the opposite direction. Thus

Hooke’s law F � �kx

This relationship is customarily called Hooke’s law. From the second law of motion,
F � ma, we have

�kx � m
d2x


dt2

Actually, the result of an STM scan is not a true topographical map of surface height but

a contour map of constant electron density on the surface. This means that atoms of different

elements appear differently, which greatly increases the value of the STM as a research tool.

Although many biological materials conduct electricity, they do so by the flow of ions rather

than of electrons and so cannot be studied with STMs. A more recent development, the atomic
force microscope (AFM) can be used on any surface, although with somewhat less resolution

than an STM. In an AFM, the sharp tip of a fractured diamond presses gently against the atoms

on a surface. A spring keeps the pressure of the tip constant, and a record is made of the

deflections of the tip as it moves across the surface. The result is a map showing contours of

constant repulsive force between the electrons of the probe and the electrons of the surface atoms.

Even relatively soft biological materials can be examined with an AFM and changes in them

monitored. For example, the linking together of molecules of the blood protein fibrin, which

occurs when blood clots, has been watched with an AFM.

Silicon atoms on the surface of a silicon crystal form a regular, repeated pattern in this image produced
by an STM.



� x � 0 (5.62)

There are various ways to write the solution to Eq. (5.62). A common one is

x � A cos (2��t � �) (5.63)

where

� � �� (5.64)

is the frequency of the oscillations and A is their amplitude. The value of �, the phase
angle, depends upon what x is at the time t � 0 and on the direction of motion then.

The importance of the simple harmonic oscillator in both classical and modern
physics lies not in the strict adherence of actual restoring forces to Hooke’s law, which
is seldom true, but in the fact that these restoring forces reduce to Hooke’s law for
small displacements x. As a result, any system in which something executes small
vibrations about an equilibrium position behaves very much like a simple harmonic
oscillator.

To verify this important point, we note that any restoring force which is a func-
tion of x can be expressed in a Maclaurin’s series about the equilibrium position 
x � 0 as

F(x) � Fx�0 � � 	
x�0

x � � 	
x�0

x2 � � 	
x�0

x3 � . . . 

Since x � 0 is the equilibrium position, Fx�0 � 0. For small x the values of x2, x3, . . .
are very small compared with x, so the third and higher terms of the series can be
neglected. The only term of significance when x is small is therefore the second one.
Hence

F(x) � � 	
x�0

x

which is Hooke’s law when (dF�dx)x�0 is negative, as of course it is for any restoring
force. The conclusion, then, is that all oscillations are simple harmonic in character
when their amplitudes are sufficiently small.

The potential-energy function U(x) that corresponds to a Hooke’s law force may be
found by calculating the work needed to bring a particle from x � 0 to x � x against
such a force. The result is

U(x) � ��x

0
F(x) dx � k�x

0 
x dx � kx2 (5.65)

which is plotted in Fig. 5.10. The curve of U(x) versus x is a parabola. If the energy
of the oscillator is E, the particle vibrates back and forth between x � �A and x �

�A, where E and A are related by E � 

1

2

 kA2. Figure 8.18 shows how a nonparabolic

potential energy curve can be approximated by a parabola for small displacements.
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Figure 5.10 The potential energy
of a harmonic oscillator is pro-
portional to x2, where x is the
displacement from the equilib-
rium position. The amplitude A
of the motion is determined by
the total energy E of the oscillator,
which classically can have any
value.



Even before we make a detailed calculation we can anticipate three quantum-
mechanical modifications to this classical picture:

1 The allowed energies will not form a continuous spectrum but instead a discrete
spectrum of certain specific values only.
2 The lowest allowed energy will not be E � 0 but will be some definite minimum
E � E0.
3 There will be a certain probability that the particle can penetrate the potential well
it is in and go beyond the limits of �A and �A.

Energy Levels

Schrödinger’s equation for the harmonic oscillator is, with U � 

1

2

 kx2,

� �E � kx2	 	 � 0 (5.66)

It is convenient to simplify Eq. (5.75) by introducing the dimensionless quantities

y � � �km�	1�2
x � ��x (5.67)

and  � �� � (5.68)

where � is the classical frequency of the oscillation given by Eq. (5.64). In making
these substitutions, what we have done is change the units in which x and E are
expressed from meters and joules, respectively, to dimensionless units.

In terms of y and  Schrödinger’s equation becomes

� ( � y2)	 � 0 (5.69)

The solutions to this equation that are acceptable here are limited by the condition that
	 → 0 as y → � in order that

��

��
�	 �2 dy � 1

Otherwise the wave function cannot represent an actual particle. The mathematical
properties of Eq. (5.69) are such that this condition will be fulfilled only when

 � 2n � 1 n � 0, 1, 2, 3, . . .

Since  � 2E�h� according to Eq. (5.68), the energy levels of a harmonic oscillator
whose classical frequency of oscillation is � are given by the formula

En � (n � 

1

2

)h� n � 0, 1, 2, 3, . . . (5.70)

Energy levels of 
harmonic oscillator

d2	


dy2
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The energy of a harmonic oscillator is thus quantized in steps of h�.
We note that when n � 0,

Zero-point energy E0 � 

1

2

 h� (5.71)

which is the lowest value the energy of the oscillator can have. This value is called the
zero-point energy because a harmonic oscillator in equilibrium with its surroundings
would approach an energy of E � E0 and not E � 0 as the temperature approaches 0 K.

Figure 5.11 is a comparison of the energy levels of a harmonic oscillator with those
of a hydrogen atom and of a particle in a box with infinitely hard walls. The shapes
of the respective potential-energy curves are also shown. The spacing of the energy
levels is constant only for the harmonic oscillator.

Wave Functions

For each choice of the parameter n there is a different wave function 	n. Each func-
tion consists of a polynomial Hn(y) (called a Hermite polynomial) in either odd or
even powers of y, the exponential factor e�y2�2, and a numerical coefficient which is
needed for 	n to meet the normalization condition

��

��
�	n�2 dy � 1 n � 0, 1, 2 . . .

The general formula for the nth wave function is

	n � � 	1�4
(2nn!)�1�2Hn(y)e�y2�2 (5.72)

The first six Hermite polynomials Hn(y) are listed in Table 5.2.
The wave functions that correspond to the first six energy levels of a harmonic

oscillator are shown in Fig. 5.12. In each case the range to which a particle oscillating
classically with the same total energy En would be confined is indicated. Evidently the
particle is able to penetrate into classically forbidden regions—in other words, to exceed
the amplitude A determined by the energy—with an exponentially decreasing proba-
bility, just as in the case of a particle in a finite square potential well.

It is interesting and instructive to compare the probability densities of a classical har-
monic oscillator and a quantum-mechanical harmonic oscillator of the same energy. The
upper curves in Fig. 5.13 show this density for the classical oscillator. The probability
P of finding the particle at a given position is greatest at the endpoints of its motion,

2m�



�

Harmonic 
oscillator
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Table 5.2 Some Hermite Polynomials

n Hn(y) n En

0 1 1 

1

2

h�

1 2y 3 

3

2

h�

2 4y2 � 2 5 

5

2

h�

3 8y3 � 12y 7 

7

2

h�

4 16y4 � 48y2 � 12 9 

9

2

h�

5 32y5 � 160y3 � 120y 11 

1

2

1

h�

Figure 5.11 Potential wells and en-
ergy levels of (a) a hydrogen atom,
(b) a particle in a box, and (c) a
harmonic oscillator. In each case
the energy levels depend in a dif-
ferent way on the quantum
number n. Only for the harmonic
oscillator are the levels equally
spaced. The symbol � means “is
proportional to.”
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where it moves slowly, and least near the equilibrium position (x � 0), where it moves
rapidly.

Exactly the opposite behavior occurs when a quantum-mechanical oscillator is
in its lowest energy state of n � 0. As shown, the probability density �	0�2 has its
maximum value at x � 0 and drops off on either side of this position. However,
this disagreement becomes less and less marked with increasing n. The lower graph
of Fig. 5.13 corresponds to n � 10, and it is clear that �	10�2 when averaged over
x has approximately the general character of the classical probability P. This is
another example of the correspondence principle mentioned in Chap. 4: In the limit
of large quantum numbers, quantum physics yields the same results as classical
physics.

It might be objected that although �	10�2 does indeed approach P when smoothed
out, nevertheless �	10�2 fluctuates rapidly with x whereas P does not. However, this
objection has meaning only if the fluctuations are observable, and the smaller the spac-
ing of the peaks and hollows, the more difficult it is to detect them experimentally.
The exponential “tails” of �	10�2 beyond x � 	 A also decrease in magnitude with
increasing n. Thus the classical and quantum pictures begin to resemble each other
more and more the larger the value of n, in agreement with the correspondence prin-
ciple, although they are very different for small n.
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Figure 5.13 Probability densities for the n � 0 and n � 10 states of a quantum-mechanical harmonic
oscillator. The probability densities for classical harmonic oscillators with the same energies are shown
in white. In the n � 10 state, the wavelength is shortest at x � 0 and longest at x � �A.
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Figure 5.12 The first six harmonic-
oscillator wave functions. The ver-
tical lines show the limits �A and
�A between which a classical os-
cillator with the same energy
would vibrate.



Example 5.7

Find the expectation value 
x� for the first two states of a harmonic oscillator.

Solution

The general formula for 
x� is


x� � ��

��
x �	�2 dx

In calculations such as this it is easier to begin with y in place of x and afterward use Eq. (5.67)

to change to x. From Eq. (5.72) and Table 5.2,

	0 � � 	
1�4

e�y2�2

	1 � � 	
1�4

� 	
1�2

(2y) e�y2�2

The values of 
x� for n � 0 and n � 1 will respectively be proportional to the integrals

n � 0: ��

��

y�	0�2 dy � ��

��

ye�y2

dy � � e�y2�
�

��

� 0

n � 1: ��

��

y�	1�2 dy � ��

��

y3e�y2

dy � �� � 	 e�y2�
�

��

� 0

The expectation value 
x� is therefore 0 in both cases. In fact, 
x� � 0 for all states of a harmonic

oscillator, which could be predicted since x � 0 is the equilibrium position of the oscillator

where its potential energy is a minimum.
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Appendix to  Chapter  5

The Tunnel Effect

W
e consider the situation that was shown in Fig. 5.9 of a particle of energy
E � U that approaches a potential barrier U high and L wide. Outside
the barrier in regions I and III Schrödinger’s equation for the particle takes

the forms

� E	I � 0 (5.73)

� E	III � 0 (5.74)

The solutions to these equations that are appropriate here are

	I � Aeik1x � Be�ik1x (5.75)

	III � Feik1x � Ge�ik1x (5.76)

where

k1 � � � (5.77)

is the wave number of the de Broglie waves that represent the particles outside the
barrier.

Because

ei� � cos � � i sin �

e�i� � cos � � i sin �

these solutions are equivalent to Eq. (5.38)—the values of the coefficients are differ-
ent in each case, of course—but are in a more suitable form to describe particles that
are not trapped.

The various terms in Eqs. (5.75) and (5.76) are not hard to interpret. As was shown
schematically in Fig. 5.9, Aeik1x is a wave of amplitude A incident from the left on the
barrier. Hence we can write

Incoming wave 	I� � Aeik1x (5.78)

This wave corresponds to the incident beam of particles in the sense that �	I��2 is their
probability density. If �I� is the group velocity of the incoming wave, which equals the
velocity of the particles, then

S � �	I��2 �I�

2�


�

p


�

�2mE�



�

Wave number
outside barrier

2m


�2

d2	III



dx2

2m


�2

d2	I
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is the flux of particles that arrive at the barrier. That is, S is the number of particles
per second that arrive there.

At x � 0 the incident wave strikes the barrier and is partially reflected, with

Reflected wave 	I� � Be�ik1x (5.79)

representing the reflected wave. Hence

	I � 	I� � 	I� (5.80)

On the far side of the barrier (x � L) there can only be a wave

Transmitted wave 	III� � Feik1x (5.81)

traveling in the �x direction at the velocity �III� since region III contains nothing that
could reflect the wave. Hence G � 0 and

	III � 	III� � Feik1x (5.82)

The transmission probability T for a particle to pass through the barrier is the ratio

T � � (5.83)

between the flux of particles that emerges from the barrier and the flux that arrives at
it. In other words, T is the fraction of incident particles that succeed in tunneling
through the barrier. Classically T � 0 because a particle with E � U cannot exist inside
the barrier; let us see what the quantum-mechanical result is.

In region II Schrödinger’s equation for the particles is

� (E � U)	II � � (U � E)	II � 0 (5.84)

Since U � E the solution is

	II � Ce�k2x � Dek2x (5.85)

where the wave number inside the barrier is

k2 � (5.86)

Since the exponents are real quantities, 	II does not oscillate and therefore does not
represent a moving particle. However, the probability density �	II�2 is not zero, so there
is a finite probability of finding a particle within the barrier. Such a particle may emerge
into region III or it may return to region I.
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Applying the Boundary Conditions

In order to calculate the transmission probability T we have to apply the appropriate
boundary conditions to 	I, 	II, and 	III. Fig. 5.14 shows the wave functions in regions
I, II, and III. As discussed earlier, both 	 and its derivative �	��x must be continuous
everywhere. With reference to Fig. 5.14, these conditions mean that for a perfect fit at
each side of the barrier, the wave functions inside and outside must have the same
value and the same slope. Hence at the left-hand side of the barrier

	I � 	II (5.87)

� (5.88)

and at the right-hand side

	II � 	III (5.89)

� (5.90)

Now we substitute 	I, 	II, and 	III from Eqs. (5.75), (5.81), and (5.85) into the
above equations. This yields in the same order

A � B � C � D (5.91)

ik1A � ik1B � �k2C � k2D (5.92)

Ce�k2L � Dek2L � Feik1L (5.93)

�k2Ce�k2L � k2Dek2L � ik1Feik1L (5.94)

Equations (5.91) to (5.94) may be solved for (A�F) to give

� 	 �  � � � 	�e(ik1�k2)L �  � � � 	� e(ik1�k2)L (5.95)
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Figure 5.14 At each wall of the barrier, the wave functions inside and outside it must match up
perfectly, which means that they must have the same values and slopes there.
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Let us assume that the potential barrier U is high relative to the energy E of the
incident particles. If this is the case, then k2�k1 � k1�k2 and

� � (5.96)

Let us also assume that the barrier is wide enough for 	II to be severely weakened
between x � 0 and x � L. This means that k2L �� 1 and

ek2L �� e�k2L

Hence Eq. (5.95) can be approximated by

� 	 � � � 	 e(ik1�k2)L (5.97)

The complex conjugate of (A�F), which we need to compute the transmission prob-
ability T, is found by replacing i by �i wherever it occurs in (A�F):

� 	* � � � 	 e(�ik1�k2)L (5.98)

Now we multiply (A�F) and (A�F)* to give

� � � 	 e2k2L

Here �III� � �I� so �III���1� � 1 in Eq. (5.83), which means that the transmission
probability is

T � � � 	
�1

�  � e�2k2L (5.99)

From the definitions of k1, Eq. (5.77), and of k2, Eq. (5.86), we see that

� 	
2

� � � 1 (5.100)

This formula means that the quantity in brackets in Eq. (5.99) varies much less with
E and U than does the exponential. The bracketed quantity, furthermore, always is of
the order of magnitude of 1 in value. A reasonable approximation of the transmission
probability is therefore

T � e�2k2L (5.101)

as stated in Sec. 5.10.
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Exercises 197

E X E R C I S E S

Press on, and faith will catch up with you. — Jean D’Alembert

5.1 Quantum Mechanics

1. Which of the wave functions in Fig. 5.15 cannot have physical

significance in the interval shown? Why not?

2. Which of the wave functions in Fig. 5.16 cannot have physical

significance in the interval shown? Why not?

3. Which of the following wave functions cannot be solutions of

Schrödinger’s equation for all values of x? Why not? (a) � �

A sec x; (b) � � A tan x; (c) � � Aex2

; (d) � � Ae�x2

.

4. Find the value of the normalization constant A for the wave

function � � Axe�x2�2.

5. The wave function of a certain particle is � � A cos2x for

���2 � x � ��2. (a) Find the value of A. (b) Find the proba-

bility that the particle be found between x � 0 and x � ��4.

5.2 The Wave Equation

6. The formula y � A cos � (t � x�ν), as we saw in Sec. 3.3, de-

scribes a wave that moves in the �x direction along a stretched

string. Show that this formula is a solution of the wave equa-

tion, Eq.(5.3).

7. As mentioned in Sec. 5.1, in order to give physically meaning-

ful results in calculations a wave function and its partial deriva-

tives must be finite, continuous, and single-valued, and in addi-

tion must be normalizable. Equation (5.9) gives the wave

function of a particle moving freely (that is, with no forces

acting on it) in the �x direction as

� � Ae�(i��)(Et�px)

where E is the particle’s total energy and p is its momentum.

Does this wave function meet all the above requirements? If

not, could a linear superposition of such wave functions meet

these requirements? What is the significance of such a superpo-

sition of wave functions?

5.4 Linearity and Superposition

8. Prove that Schrödinger’s equation is linear by showing that

� � a1�1(x, t) � a2�2(x, t)

is also a solution of Eq. (5.14) if �1 and �2 are themselves

solutions.

5.6 Operators

9. Show that the expectation values �px� and �xp� are related by

�px� � �xp� �

This result is described by saying that p and x do not commute
and it is intimately related to the uncertainty principle.

10. An eigenfunction of the operator d2�dx2 is sin nx, where n

� 1, 2, 3, . . . . Find the corresponding eigenvalues.

�
�
i

(a) (b) (c)

(d) (e) (f )

�
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x
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Figure 5.15
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�
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5.7 Schrödinger’s Equation: Steady-State Form

11. Obtain Schrödinger’s steady-state equation from Eq. (3.5) with

the help of de Broglie’s relationship � � h�m� by letting y � �
and finding �2���x2.

5.8 Particle in a Box

12. According to the correspondence principle, quantum theory

should give the same results as classical physics in the limit of

large quantum numbers. Show that as n → �, the probability of

finding the trapped particle of Sec. 5.8 between x and x � �x

is � x�L and so is independent of x, which is the classical 

expectation.

13. One of the possible wave functions of a particle in the potential

well of Fig. 5.17 is sketched there. Explain why the wavelength

and amplitude of � vary as they do.
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of the wave functions for the n � 1 and n � 2 states of a parti-

cle in a box L wide.

19. Find the probability that a particle in a box L wide can be

found between x � 0 and x � L�n when it is in the nth state.

20. In Sec. 3.7 the standard deviation � of a set of N measurements

of some quantity x was defined as

� � ���
N

1
� �

N

i�1

(xi�� x0)2�
(a) Show that, in terms of expectation values, this formula can be

written as

� � ��(x � ��x	)2	� � ��x2	 �� �x	2�

(b) If the uncertainty in position of a particle in a box is taken as

the standard deviation, find the uncertainty in the expectation

value �x	 � L�2 for n � 1. (c) What is the limit of �x as n

increases?

21. A particle is in a cubic box with infinitely hard walls whose

edges are L long (Fig. 5.18). The wave functions of the particle

are given by

� � A sin sin sin

Find the value of the normalization constant A.

nx � 1, 2, 3, . . .

ny � 1, 2, 3, . . .

nz � 1, 2, 3, . . .

nz�z
�

L

ny�y
�

L

nx�x
�

L

y

z

L

L
L

Figure 5.18 A cubic box.

x

�

x

∞∞

V

L

L

Figure 5.17

14. In Sec. 5.8 a box was considered that extends from x � 0 to 

x � L. Suppose the box instead extends from x � x0 to x �

x0 � L, where x0 ≠ 0. Would the expression for the wave func-

tions of a particle in this box be any different from those in the

box that extends from x � 0 to x � L? Would the energy levels

be different?

15. An important property of the eigenfunctions of a system is that

they are orthogonal to one another, which means that


�

��
�n�m dV � 0 n � m

Verify this relationship for the eigenfunctions of a particle in a

one-dimensional box given by Eq. (5.46).

16. A rigid-walled box that extends from �L to L is divided into

three sections by rigid interior walls at �x and x, where x 	 L.

Each section contains one particle in its ground state. (a) What

is the total energy of the system as a function of x? (b) Sketch

E(x) versus x. (c) At what value of x is E(x) a minimum?

17. As shown in the text, the expectation value �x	 of a particle

trapped in a box L wide is L�2, which means that its average

position is the middle of the box. Find the expectation value �x2	.

18. As noted in Exercise 8, a linear combination of two wave func-

tions for the same system is also a valid wave function. Find

the normalization constant B for the combination

� � B �sin � sin �2�x
�

L

�x
�
L

22. The particle in the box of Exercise 21 is in its ground state of

nx � ny � nz � 1. (a) Find the probability that the particle will

be found in the volume defined by 0 
 x 
 L�4, 0 
 y 


L�4, 0 
 z 
 L�4. (b) Do the same for L�2 instead of L�4.

23. (a) Find the possible energies of the particle in the box of

Exercise 21 by substituting its wave function � in Schrödinger’s

equation and solving for E. (Hint: Inside the box U � 0.) 

(b) Compare the ground-state energy of a particle in a one-

dimensional box of length L with that of a particle in the three-

dimensional box.

5.10 Tunnel Effect

24. Electrons with energies of 0.400 eV are incident on a barrier

3.00 eV high and 0.100 nm wide. Find the approximate proba-

bility for these electrons to penetrate the barrier.



amplitude such that its bob rises a maximum of 1.00 mm

above its equilibrium position. What is the corresponding

quantum number?

34. Show that the harmonic-oscillator wave function �1 is a solu-

tion of Schrödinger’s equation.

35. Repeat Exercise 34 for �2.

36. Repeat Exercise 34 for �3.

Appendix: The Tunnel Effect

37. Consider a beam of particles of kinetic energy E incident on a

potential step at x � 0 that is U high, where E � U (Fig. 5.19).

(a) Explain why the solution De�ik�x (in the notation of 

appendix) has no physical meaning in this situation, so that D

� 0. (b) Show that the transmission probability here is T �

CC*���AA*�1 � 4k2
1�(k1 � k�)2. (c) A 1.00-mA beam of elec-

trons moving at 2.00 � 106 m/s enters a region with a sharply

defined boundary in which the electron speeds are reduced to

1.00 � 106 m/s by a difference in potential. Find the transmit-

ted and reflected currents.

38. An electron and a proton with the same energy E approach a

potential barrier whose height U is greater than E. Do they have

the same probability of getting through? If not, which has the

greater probability?
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25. A beam of electrons is incident on a barrier 6.00 eV high and

0.200 nm wide. Use Eq. (5.60) to find the energy they should

have if 1.00 percent of them are to get through the barrier.

5.11 Harmonic Oscillator

26. Show that the energy-level spacing of a harmonic oscillator is in

accord with the correspondence principle by finding the ratio

�En �En between adjacent energy levels and seeing what hap-

pens to this ratio as n → 	.

27. What bearing would you think the uncertainty principle has on

the existence of the zero-point energy of a harmonic oscillator?

28. In a harmonic oscillator, the particle varies in position from �A to

�A and in momentum from �p0 to �p0. In such an oscillator,

the standard deviations of x and p are �x � A��2� and �p �

p0��2�. Use this observation to show that the minimum energy of

a harmonic oscillator is 

1

2

h�.

29. Show that for the n � 0 state of a harmonic oscillator whose

classical amplitude of motion is A, y � 1 at x � A, where y is

the quantity defined by Eq. (5.67).

30. Find the probability density ��0�2 dx at x � 0 and at x � �A of

a harmonic oscillator in its n � 0 state (see Fig. 5.13).

31. Find the expectation values �x� and �x2� for the first two states

of a harmonic oscillator.

32. The potential energy of a harmonic oscillator is U � 

1

2

kx2.

Show that the expectation value �U� of U is E0�2 when the

oscillator is in the n � 0 state. (This is true of all states of the

harmonic oscillator, in fact.) What is the expectation value of

the oscillator’s kinetic energy? How do these results compare

with the classical values of U� and K�E�?

33. A pendulum with a 1.00-g bob has a massless string 250 mm

long. The period of the pendulum is 1.00 s. (a) What is its

zero-point energy? Would you expect the zero-point oscillations

to be detectable? (b) The pendulum swings with a very small

I II

E

E – U

Energy

U

Figure 5.19
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CHAPTER 1

Relativity

According to the theory of relativity, nothing can travel faster than light. Although today’s spacecraft can

exceed 10 km/s, they are far from this ultimate speed limit.



2 Chapter One

I
n 1905 a young physicist of twenty-six named Albert Einstein showed how meas-
urements of time and space are affected by motion between an observer and what
is being observed. To say that Einstein’s theory of relativity revolutionized science

is no exaggeration. Relativity connects space and time, matter and energy, electricity
and magnetism—links that are crucial to our understanding of the physical universe.
From relativity have come a host of remarkable predictions, all of which have been
confirmed by experiment. For all their profundity, many of the conclusions of relativity
can be reached with only the simplest of mathematics.

1.1   SPECIAL RELATIVITY

All motion is relative; the speed of light in free space is the same for all
observers

When such quantities as length, time interval, and mass are considered in elementary
physics, no special point is made about how they are measured. Since a standard unit
exists for each quantity, who makes a certain determination would not seem to matter—
everybody ought to get the same result. For instance, there is no question of principle
involved in finding the length of an airplane when we are on board. All we have to do
is put one end of a tape measure at the airplane’s nose and look at the number on the
tape at the airplane’s tail.

But what if the airplane is in flight and we are on the ground? It is not hard to de-
termine the length of a distant object with a tape measure to establish a baseline, a
surveyor’s transit to measure angles, and a knowledge of trigonometry. When we meas-
ure the moving airplane from the ground, though, we find it to be shorter than it is
to somebody in the airplane itself. To understand how this unexpected difference arises
we must analyze the process of measurement when motion is involved.

Frames of Reference

The first step is to clarify what we mean by motion. When we say that something is
moving, what we mean is that its position relative to something else is changing. A
passenger moves relative to an airplane; the airplane moves relative to the earth; the
earth moves relative to the sun; the sun moves relative to the galaxy of stars (the Milky
Way) of which it is a member; and so on. In each case a frame of reference is part of
the description of the motion. To say that something is moving always implies a specific
frame of reference.

An inertial frame of reference is one in which Newton’s first law of motion holds.
In such a frame, an object at rest remains at rest and an object in motion continues to
move at constant velocity (constant speed and direction) if no force acts on it. Any
frame of reference that moves at constant velocity relative to an inertial frame is itself
an inertial frame.

All inertial frames are equally valid. Suppose we see something changing its posi-
tion with respect to us at constant velocity. Is it moving or are we moving? Suppose
we are in a closed laboratory in which Newton’s first law holds. Is the laboratory mov-
ing or is it at rest? These questions are meaningless because all constant-velocity motion
is relative. There is no universal frame of reference that can be used everywhere, no
such thing as “absolute motion.”

The theory of relativity deals with the consequences of the lack of a universal frame
of reference. Special relativity, which is what Einstein published in 1905, treats
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problems that involve inertial frames of reference. General relativity, published by
Einstein a decade later, describes the relationship between gravity and the geometrical
structure of space and time. The special theory has had an enormous impact on much
of physics, and we shall concentrate on it here.

Postulates of Special Relativity

Two postulates underlie special relativity. The first, the principle of relativity, states:

The laws of physics are the same in all inertial frames of reference.

This postulate follows from the absence of a universal frame of reference. If the laws
of physics were different for different observers in relative motion, the observers could
find from these differences which of them were “stationary” in space and which were
“moving.” But such a distinction does not exist, and the principle of relativity expresses
this fact.

The second postulate is based on the results of many experiments:

The speed of light in free space has the same value in all inertial frames of
reference.

This speed is 2.998 � 108 m/s to four significant figures.
To appreciate how remarkable these postulates are, let us look at a hypothetical

experiment basically no different from actual ones that have been carried out in a
number of ways. Suppose I turn on a searchlight just as you fly past in a spacecraft
at a speed of 2 � 108 m/s (Fig. 1.1). We both measure the speed of the light waves
from the searchlight using identical instruments. From the ground I find their speed
to be 3 � 108 m/s as usual. “Common sense” tells me that you ought to find a speed
of (3 � 2) � 108 m/s, or only 1 � 108 m/s, for the same light waves. But you also
find their speed to be 3 � 108 m/s, even though to me you seem to be moving parallel
to the waves at 2 � 108 m/s.

Figure 1.1 The speed of light is the same to all observers.

(a) b) c)

c = 3 ✕ 108 m/s

c  = 3 ✕ 108 m/s

v = 2 ✕ 108 m/s

( (
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Figure 1.2 The Michelson-Morley experiment.

Mirror A

Glass plate

P
at

h
 A

Path B Mirror B

Viewing screen

Half-silvered mirror

Parallel light
from

single source

v Hypothetical
ether current

Albert A. Michelson (1852–1931)

was born in Germany but came to the

United States at the age of two with

his parents, who settled in Nevada. He

attended the U.S. Naval Academy at

Annapolis where, after two years of sea

duty, he became a science instructor.

To improve his knowledge of optics,

in which he wanted to specialize,

Michelson went to Europe and stud-

ied in Berlin and Paris. Then he left

the Navy to work first at the Case School of Applied Science in

Ohio, then at Clark University in Massachusetts, and finally at

the University of Chicago, where he headed the physics de-

partment from 1892 to 1929. Michelson’s speciality was high-

precision measurement, and for many decades his successive

figures for the speed of light were the best available. He rede-

fined the meter in terms of wavelengths of a particular spectral

line and devised an interferometer that could determine the

diameter of a star (stars appear as points of light in even the

most powerful telescopes).

Michelson’s most significant achievement, carried out in

1887 in collaboration with Edward Morley, was an experiment

to measure the motion of the earth through the “ether,” a hy-

pothetical medium pervading the universe in which light waves

were supposed to occur. The notion of the ether was a hang-

over from the days before light waves were recognized as elec-

tromagnetic, but nobody at the time seemed willing to discard

the idea that light propagates relative to some sort of universal

frame of reference.

To look for the earth’s motion through the ether, Michelson

and Morley used a pair of light beams formed by a half-silvered

mirror, as in Fig. 1.2. One light beam is directed to a mirror

along a path perpendicular to the ether current, and the other

goes to a mirror along a path parallel to the ether current. Both

beams end up at the same viewing screen. The clear glass plate

ensures that both beams pass through the same thicknesses of

air and glass. If the transit times of the two beams are the same,

they will arrive at the screen in phase and will interfere con-

structively. An ether current due to the earth’s motion parallel

to one of the beams, however, would cause the beams to have

different transit times and the result would be destructive in-

terference at the screen. This is the essence of the experiment.

Although the experiment was sensitive enough to detect the

expected ether drift, to everyone’s surprise none was found.

The negative result had two consequences. First, it showed that

the ether does not exist and so there is no such thing as “ab-

solute motion” relative to the ether: all motion is relative to a

specified frame of reference, not to a universal one. Second, the

result showed that the speed of light is the same for all ob-

servers, which is not true of waves that need a material medium

in which to occur (such as sound and water waves).

The Michelson-Morley experiment set the stage for Einstein’s

1905 special theory of relativity, a theory that Michelson him-

self was reluctant to accept. Indeed, not long before the flow-

ering of relativity and quantum theory revolutionized physics,

Michelson announced that “physical discoveries in the future

are a matter of the sixth decimal place.” This was a common

opinion of the time. Michelson received a Nobel Prize in 1907,

the first American to do so.
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There is only one way to account for these results without violating the principle of
relativity. It must be true that measurements of space and time are not absolute but de-
pend on the relative motion between an observer and what is being observed. If I were
to measure from the ground the rate at which your clock ticks and the length of your
meter stick, I would find that the clock ticks more slowly than it did at rest on the ground
and that the meter stick is shorter in the direction of motion of the spacecraft. To you,
your clock and meter stick are the same as they were on the ground before you took off.
To me they are different because of the relative motion, different in such a way that the
speed of light you measure is the same 3 � 108 m/s I measure. Time intervals and lengths
are relative quantities, but the speed of light in free space is the same to all observers.

Before Einstein’s work, a conflict had existed between the principles of mechanics,
which were then based on Newton’s laws of motion, and those of electricity and
magnetism, which had been developed into a unified theory by Maxwell. Newtonian
mechanics had worked well for over two centuries. Maxwell’s theory not only covered
all that was then known about electric and magnetic phenomena but had also pre-
dicted that electromagnetic waves exist and identified light as an example of them.
However, the equations of Newtonian mechanics and those of electromagnetism differ
in the way they relate measurements made in one inertial frame with those made in a
different inertial frame.

Einstein showed that Maxwell’s theory is consistent with special relativity whereas
Newtonian mechanics is not, and his modification of mechanics brought these branches
of physics into accord. As we will find, relativistic and Newtonian mechanics agree for
relative speeds much lower than the speed of light, which is why Newtonian mechanics
seemed correct for so long. At higher speeds Newtonian mechanics fails and must be
replaced by the relativistic version.

1.2   TIME DILATION

A moving clock ticks more slowly than a clock at rest

Measurements of time intervals are affected by relative motion between an observer
and what is observed. As a result, a clock that moves with respect to an observer ticks
more slowly than it does without such motion, and all processes (including those of
life) occur more slowly to an observer when they take place in a different inertial frame.

If someone in a moving spacecraft finds that the time interval between two events
in the spacecraft is t0, we on the ground would find that the same interval has the
longer duration t. The quantity t0, which is determined by events that occur at the same
place in an observer’s frame of reference, is called the proper time of the interval
between the events. When witnessed from the ground, the events that mark the be-
ginning and end of the time interval occur at different places, and in consequence the
duration of the interval appears longer than the proper time. This effect is called time
dilation (to dilate is to become larger).

To see how time dilation comes about, let us consider two clocks, both of the par-
ticularly simple kind shown in Fig. 1.3. In each clock a pulse of light is reflected back
and forth between two mirrors L0 apart. Whenever the light strikes the lower mirror,
an electric signal is produced that marks the recording tape. Each mark corresponds
to the tick of an ordinary clock.

One clock is at rest in a laboratory on the ground and the other is in a spacecraft
that moves at the speed � relative to the ground. An observer in the laboratory watches
both clocks: does she find that they tick at the same rate?
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Figure 1.4 shows the laboratory clock in operation. The time interval between ticks
is the proper time t0 and the time needed for the light pulse to travel between the
mirrors at the speed of light c is t0�2. Hence t0�2 � L0�c and

t0 � (1.1)

Figure 1.5 shows the moving clock with its mirrors perpendicular to the direction
of motion relative to the ground. The time interval between ticks is t. Because the clock
is moving, the light pulse, as seen from the ground, follows a zigzag path. On its way
from the lower mirror to the upper one in the time t�2, the pulse travels a horizontal
distance of � (t�2) and a total distance of c(t�2). Since L0 is the vertical distance between
the mirrors,

� �
2

� L2
0 � � �

2

(c2 � �2) � L2
0

t2 � �

t � (1.2)

But 2L0�c is the time interval t0 between ticks on the clock on the ground, as in
Eq. (1.1), and so

2L0�c
��
�1 � �2��c2�

(2L0)2

��
c2(1 � �2�c2)

4L2
0

�
c2 � �2

t2
�
4

� t
�
2

ct
�
2

2L0
�

c

0

t

t
2
–

Figure 1.4 A light-pulse clock at
rest on the ground as seen by an
observer on the ground. The dial
represents a conventional clock on
the ground.

M
et

er
 s

ti
ck

L0

Mirror

Light pulse

Mirror

Photosensitive surface

Recording device

“Ticks”

Figure 1.3 A simple clock. Each “tick” corresponds to a round trip of the light pulse from the lower
mirror to the upper one and back.
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Time dilation t � (1.3)

Here is a reminder of what the symbols in Eq. (1.4) represent:

t0 � time interval on clock at rest relative to an observer � proper time
t � time interval on clock in motion relative to an observer
� � speed of relative motion
c � speed of light

Because the quantity �1 � �2��c2� is always smaller than 1 for a moving object, t is
always greater than t0. The moving clock in the spacecraft appears to tick at a slower
rate than the stationary one on the ground, as seen by an observer on the ground.

Exactly the same analysis holds for measurements of the clock on the ground by
the pilot of the spacecraft. To him, the light pulse of the ground clock follows a zigzag
path that requires a total time t per round trip. His own clock, at rest in the spacecraft,
ticks at intervals of t0. He too finds that 

t �

so the effect is reciprocal: every observer finds that clocks in motion relative to him
tick more slowly than clocks at rest relative to him.

Our discussion has been based on a somewhat unusual clock. Do the same conclusions
apply to ordinary clocks that use machinery—spring-controlled escapements, tuning
forks, vibrating quartz crystals, or whatever—to produce ticks at constant time intervals?
The answer must be yes, since if a mirror clock and a conventional clock in the space-
craft agree with each other on the ground but not when in flight, the disagreement
between then could be used to find the speed of the spacecraft independently of any
outside frame of reference—which contradicts the principle that all motion is relative.

t0
��
�1 � �2��c2�

t0
��
�1 � �2��c2�

0

t

t
2
–

t
2
–v

v

t
2
–c L0

v

Figure 1.5 A light-pulse clock in a spacecraft as seen by an observer on the ground. The mirrors are
parallel to the direction of motion of the spacecraft. The dial represents a conventional clock on the
ground.
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The Ultimate Speed Limit

T he earth and the other planets of the solar system seem to be natural products of the evolu-

tion of the sun. Since the sun is a rather ordinary star in other ways, it is not surprising that

other stars have been found to have planetary systems around them as well. Life developed here

on earth, and there is no known reason why it should not also have done so on some of these

planets. Can we expect ever to be able to visit them and meet our fellow citizens of the universe?

The trouble is that nearly all stars are very far away—thousands or millions of light-years away. (A

light-year, the distance light travels in a year, is 9.46 � 1015 m.) But if we can build a spacecraft

whose speed is thousands or millions of times greater than the speed of light c, such distances

would not be an obstacle.

Alas, a simple argument based on Einstein’s postulates shows that nothing can move faster

than c. Suppose you are in a spacecraft traveling at a constant speed � relative to the earth that

is greater than c. As I watch from the earth, the lamps in the spacecraft suddenly go out. You

switch on a flashlight to find the fuse box at the front of the spacecraft and change the blown

fuse (Fig. 1.6a). The lamps go on again.

From the ground, though, I would see something quite different. To me, since your speed �

is greater than c, the light from your flashlight illuminates the back of the spacecraft (Fig. 1.6b).

I can only conclude that the laws of physics are different in your inertial frame from what they

are in my inertial frame—which contradicts the principle of relativity. The only way to avoid

this contradiction is to assume that nothing can move faster than the speed of light. This as-

sumption has been tested experimentally many times and has always been found to be correct.

The speed of light c in relativity is always its value in free space of 3.00 � 108 m/s. In all ma-

terial media, such as air, water, or glass, light travels more slowly than this, and atomic particles

are able to move faster in such media than does light. When an electrically charged particle moves

through a transparent substance at a speed exceeding that of light in the substance, a cone of light

waves is emitted that corresponds to the bow wave produced by a ship moving through the water

faster than water waves do. These light waves are known as Cerenkov radiation and form the

basis of a method of determining the speeds of such particles. The minimum speed a particle must

have to emit Cerenkov radiation is c�n in a medium whose index of refraction is n. Cerenkov ra-

diation is visible as a bluish glow when an intense beam of particles is involved.

(a) (b)

Figure 1.6 A person switches on a flashlight in a spacecraft assumed to be moving relative to the earth
faster than light. (a) In the spacecraft frame, the light goes to the front of the spacecraft. (b) In the
earth frame, the light goes to the back of the spacecraft. Because observers in the spacecraft and on
the earth would see different events, the principle of relativity would be violated. The conclusion is
that the spacecraft cannot be moving faster than light relative to the earth (or relative to anything else).
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Albert Einstein (1879–1955), bitterly

unhappy with the rigid discipline of

the schools of his native Germany,

went at sixteen to Switzerland to com-

plete his education, and later got a job

examining patent applications at the

Swiss Patent Office. Then, in 1905,

ideas that had been germinating in his

mind for years when he should have

been paying attention to other matters

(one of his math teachers called

Einstein a “lazy dog”) blossomed into

three short papers that were to change decisively the course not

only of physics but of modern civilization as well.

The first paper, on the photoelectric effect, proposed that light

has a dual character with both particle and wave properties. The

subject of the second paper was Brownian motion, the irregular

zigzag movement of tiny bits of suspended matter, such as pollen

grains in water. Einstein showed that Brownian motion results

from the bombardment of the particles by randomly moving mol-

ecules in the fluid in which they are suspended. This provided

the long-awaited definite link with experiment that convinced

the remaining doubters of the molecular theory of matter. The

third paper introduced the special theory of relativity.

Although much of the world of physics was originally either

indifferent or skeptical, even the most unexpected of Einstein’s

conclusions were soon confirmed and the development of what

is now called modern physics began in earnest. After university

posts in Switzerland and Czechoslovakia, in 1913 he took up an

appointment at the Kaiser Wilhelm Institute in Berlin that left him

able to do research free of financial worries and routine duties.

Einstein’s interest was now mainly in gravitation, and he started

where Newton had left off more than two centuries earlier.

Einstein’s general theory of relativity, published in 1916, re-

lated gravity to the structure of space and time. In this theory

the force of gravity can be thought of as arising from a warp-

ing of spacetime around a body of matter so that a nearby mass

tends to move toward it, much as a marble rolls toward the bot-

tom of a saucer-shaped hole. From general relativity came a

number of remarkable predictions, such as that light should be

subject to gravity, all of which were verified experimentally. The

later discovery that the universe is expanding fit neatly into the

theory. In 1917 Einstein introduced the idea of stimulated emis-

sion of radiation, an idea that bore fruit forty years later in the

invention of the laser.

The development of quantum mechanics in the 1920s dis-

turbed Einstein, who never accepted its probabilistic rather than

deterministic view of events on an atomic scale. “God does not

play dice with the world,” he said, but for once his physical in-

tuition seemed to be leading him in the wrong direction.

Einstein, by now a world celebrity, left Germany in 1933 af-

ter Hitler came to power and spent the rest of his life at the In-

stitute for Advanced Study in Princeton, New Jersey, thereby

escaping the fate of millions of other European Jews at the hands

of the Germans. His last years were spent in an unsuccessful

search for a theory that would bring gravitation and electro-

magnetism together into a single picture, a problem worthy of

his gifts but one that remains unsolved to this day.

(AIP Niels Bohr Library)

Example 1.1

A spacecraft is moving relative to the earth. An observer on the earth finds that, between 1 P.M.

and 2 P.M. according to her clock, 3601 s elapse on the spacecraft’s clock. What is the space-

craft’s speed relative to the earth?

Solution 

Here t0 � 3600 s is the proper time interval on the earth and t � 3601 s is the time interval in

the moving frame as measured from the earth. We proceed as follows:

t �

1 � � � �
2

� � c �1 � ����
2

� � (2.998 � 108 m/s) �1 � ����
2

�
� 7.1 � 106 m/s

Today’s spacecraft are much slower than this. For instance, the highest speed of the Apollo 11 space-

craft that went to the moon was only 10,840 m/s, and its clocks differed from those on the earth

by less than one part in 109. Most of the experiments that have confirmed time dilation made use

of unstable nuclei and elementary particles which readily attain speeds not far from that of light.

3600 s
�
3601 s

t0
�
t

t0
�
t

�2

�
c2

t0
��
�1 � �2��c2�
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Although time is a relative quantity, not all the notions of time formed by every-
day experience are incorrect. Time does not run backward to any observer, for in-
stance. A sequence of events that occur at some particular point at t1, t2, t3, . . . will
appear in the same order to all observers everywhere, though not necessarily with the
same time intervals t2 � t1, t3 � t2, . . . between each pair of events. Similarly, no
distant observer, regardless of his or her state of motion, can see an event before it
happens—more precisely, before a nearby observer sees it—since the speed of light
is finite and signals require the minimum period of time L�c to travel a distance L.
There is no way to peer into the future, although past events may appear different to
different observers.

1.3   DOPPLER EFFECT

Why the universe is believed to be expanding

We are all familiar with the increase in pitch of a sound when its source approaches
us (or we approach the source) and the decrease in pitch when the source recedes from
us (or we recede from the source). These changes in frequency constitute the doppler
effect, whose origin is straightforward. For instance, successive waves emitted by a
source moving toward an observer are closer together than normal because of the
advance of the source; because the separation of the waves is the wavelength of the
sound, the corresponding frequency is higher. The relationship between the source
frequency �0 and the observed frequency � is

Apollo 11 lifts off its pad to begin the first human
visit to the moon. At its highest speed of 10.8 km/s
relative to the earth, its clocks differed from those on
the earth by less than one part in a billion.
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� � �0� � (1.4)

where c � speed of sound

� � speed of observer (� for motion toward the source, � for motion away
from it)

V � speed of the source (� for motion toward the observer, � for motion
away from him)

If the observer is stationary, � � 0, and if the source is stationary, V � 0.
The doppler effect in sound varies depending on whether the source, or the observer,

or both are moving. This appears to violate the principle of relativity: all that should
count is the relative motion of source and observer. But sound waves occur only in a
material medium such as air or water, and this medium is itself a frame of reference
with respect to which motions of source and observer are measurable. Hence there is
no contradiction. In the case of light, however, no medium is involved and only rela-
tive motion of source and observer is meaningful. The doppler effect in light must
therefore differ from that in sound.

We can analyze the doppler effect in light by considering a light source as a clock
that ticks �0 times per second and emits a wave of light with each tick. We will examine
the three situations shown in Fig. 1.7.

1 Observer moving perpendicular to a line between him and the light source. The proper
time between ticks is t0 � 1��0, so between one tick and the next the time
t � t0��1 � �2��c2� elapses in the reference frame of the observer. The frequency he
finds is accordingly

�(transverse) � �

� � �0�1 � �2��c2� (1.5)

The observed frequency � is always lower than the source frequency �0.

2 Observer receding from the light source. Now the observer travels the distance � t away
from the source between ticks, which means that the light wave from a given tick takes

Transverse

doppler effect

in light

�1 � �2��c2�
��

t0

1
�
t

1 � ��c
�
1 � V�c

Doppler effect in
sound

Figure 1.7 The frequency of the light seen by an observer depends on the direction and speed of the
observer’s motion relative to its source.

(1)

Source

v

(2)

v

(3)

v

Observer
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� t�c longer to reach him than the previous one. Hence the total time between the arrival
of successive waves is 

T � t � � t0 � t0 � t0 ��
and the observed frequency is 

�(receding) � � ��� �0 �� (1.6)

The observed frequency � is lower than the source frequency �0. Unlike the case of
sound waves, which propagate relative to a material medium it makes no difference
whether the observer is moving away from the source or the source is moving away
from the observer.

3 Observer approaching the light source. The observer here travels the distance � t toward
the source between ticks, so each light wave takes � t�c less time to arrive than the
previous one. In this case T � t � � t�c and the result is

�(approaching) � �0�� (1.7)
1 � ��c
�
1 � ��c

1 � ��c
�
1 � ��c

1 � ��c
�
1 � ��c

1
�
t0

1
�
T

1 � ��c
�
1 � ��c

�1 � ���c� �1 � ���c�
���
�1 � ���c� �1 � ���c�

1 � ��c
��
�1 � �2��c2�

� t
�
c

a

�4415.1 �4526.6

b

The observed frequency is higher than the source frequency. Again, the same formula
holds for motion of the source toward the observer.

Equations (1.6) and (1.7) can be combined in the single formula

� � �0 �� (1.8)

by adopting the convention that � is � for source and observer approaching each other
and � for source and observer receding from each other.

1 � ��c
�
1 � ��c

Longitudinal
doppler effect
in light

Spectra of the double star Mizar, which consists of two stars that circle their center of mass, taken
2 days apart. In a the stars are in line with no motion toward or away from the earth, so their
spectral lines are superimposed. In b one star is moving toward the earth and the other is mov-
ing away from the earth, so the spectral lines of the former are doppler-shifted toward the blue
end of the spectrum and those of the latter are shifted toward the red end.
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Example 1.2

A driver is caught going through a red light. The driver claims to the judge that the color she

actually saw was green (� � 5.60 � 1014 Hz) and not red (�0 � 4.80 � 1014 Hz) because of

the doppler effect. The judge accepts this explanation and instead fines her for speeding at the

rate of $1 for each km/h she exceeded the speed limit of 80 km/h. What was the fine?

Solution

Solving Eq. (1.8) for � gives

� � c� � � (3.00 � 108 m/s)� �
� 4.59 � 107 m/s � 1.65 � 108 km/h

since 1 m/s � 3.6 km/h. The fine is therefore $(1.65 � 108
� 80) � $164,999,920.

Visible light consists of electromagnetic waves in a frequency band to which the eye
is sensitive. Other electromagnetic waves, such as those used in radar and in radio
communications, also exhibit the doppler effect in accord with Eq. (1.8). Doppler shifts
in radar waves are used by police to measure vehicle speeds, and doppler shifts in the
radio waves emitted by a set of earth satellites formed the basis of the highly accurate
Transit system of marine navigation.

The Expanding Universe

The doppler effect in light is an important tool in astronomy. Stars emit light of cer-
tain characteristic frequencies called spectral lines, and motion of a star toward or away
from the earth shows up as a doppler shift in these frequencies. The spectral lines of
distant galaxies of stars are all shifted toward the low-frequency (red) end of the
spectrum and hence are called “red shifts.” Such shifts indicate that the galaxies are re-
ceding from us and from one another. The speeds of recession are observed to be

(5.60)2
� (4.80)2

��
(5.60)2

� (4.80)2

�2
� �2

0
�
�2

� �2
0

Edwin Hubble (1889–

1953) was born in Missouri

and, although always inter-

ested in astronomy, pursued

a variety of other subjects

as well at the University of

Chicago. He then went as a

Rhodes Scholar to Oxford

University in England where

he concentrated on law,

Spanish, and heavyweight

boxing. After two years of

teaching at an Indiana high

school, Hubble realized

what his true vocation was

and returned to the University of Chicago to study astronomy.

At Mt. Wilson Observatory in California, Hubble made

the first accurate measurements of the distances of spiral

galaxies which showed that they are far away in space from

our own Milky Way galaxy. It had been known for some time

that such galaxies have red shifts in their spectra that indi-

cate motion away from the Milky Way, and Hubble joined his

distance figures with the observed red shifts to conclude that

the recession speeds were proportional to distance. This im-

plies that the universe is expanding, a remarkable discovery

that has led to the modern picture of the universe. Hubble

was the first to use the 200-inch telescope, for many years

the world’s largest, at Mt. Palomar in California, in 1949. In

his later work Hubble tried to determine the structure of the

universe by finding how the concentration of remote galax-

ies varies with distance, a very difficult task that only today

is being accomplished.
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proportional to distance, which suggests that the entire universe is expanding (Fig. 1.8).
This proportionality is called Hubble’s law.

The expansion apparently began about 13 billion years ago when a very small, in-
tensely hot mass of primeval matter exploded, an event usually called the Big Bang.
As described in Chap. 13, the matter soon turned into the electrons, protons, and neu-
trons of which the present universe is composed. Individual aggregates that formed
during the expansion became the galaxies of today. Present data suggest that the current
expansion will continue forever.

Example 1.3

A distant galaxy in the constellation Hydra is receding from the earth at 6.12 � 107 m/s. By

how much is a green spectral line of wavelength 500 nm (1 nm � 10�9 m) emitted by this

galaxy shifted toward the red end of the spectrum?

(b)

(a)

Approximate distance, light-years
R
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Figure 1.8 (a) Graph of recession speed versus distance for distant galaxies. The speed of recession
averages about 21 km/s per million light-years. (b) Two-dimensional analogy of the expanding uni-
verse. As the balloon is inflated, the spots on it become farther apart. A bug on the balloon would
find that the farther away a spot is from its location, the faster the spot seems to be moving away;
this is true no matter where the bug is. In the case of the universe, the more distant a galaxy is from
us, the faster it is moving away, which means that the universe is expanding uniformly.
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Solution

Since � � c�� and �0 � c��0, from Eq. (1.6) we have

� � �0 ��
Here � � 0.204c and �0 � 500 nm, so

� � 500 nm �� � 615 nm

which is in the orange part of the spectrum. The shift is � � �0 � 115 nm. This galaxy is believed

to be 2.9 billion light-years away.

1.4   LENGTH CONTRACTION

Faster means shorter

Measurements of lengths as well as of time intervals are affected by relative motion.
The length L of an object in motion with respect to an observer always appears to the
observer to be shorter than its length L0 when it is at rest with respect to him. This
contraction occurs only in the direction of the relative motion. The length L0 of an
object in its rest frame is called its proper length. (We note that in Fig. 1.5 the clock
is moving perpendicular to v, hence L � L0 there.)

The length contraction can be derived in a number of ways. Perhaps the simplest
is based on time dilation and the principle of relativity. Let us consider what happens
to unstable particles called muons that are created at high altitudes by fast cosmic-ray
particles (largely protons) from space when they collide with atomic nuclei in the earth’s
atmosphere. A muon has a mass 207 times that of the electron and has a charge of
either �e or �e; it decays into an electron or a positron after an average lifetime of
2.2 �s (2.2 � 10�6 s).

Cosmic-ray muons have speeds of about 2.994 � 108 m/s (0.998c) and reach sea
level in profusion—one of them passes through each square centimeter of the earth’s
surface on the average slightly more often than once a minute. But in t0 � 2.2 �s,
their average lifetime, muons can travel a distance of only

� t0 � (2.994 � 108 m/s)(2.2 � 10�6 s) � 6.6 � 102 m � 0.66 km

before decaying, whereas they are actually created at altitudes of 6 km or more.
To resolve the paradox, we note that the muon lifetime of t0 � 2.2 �s is what an

observer at rest with respect to a muon would find. Because the muons are hurtling
toward us at the considerable speed of 0.998c, their lifetimes are extended in our frame
of reference by time dilation to

t � � � 34.8 � 10�6 s � 34.8 �s

The moving muons have lifetimes almost 16 times longer than those at rest. In a time
interval of 34.8 �s, a muon whose speed is 0.998c can cover the distance

� t � (2.994 � 108 m/s)(34.8 � 10�6 s) � 1.04 � 104 m � 10.4 km

2.2 � 10�6 s
���
�1 � (0�.998c)�2�c2�

t0
��
�1 � �2��c2�

1 � 0.204
��
1 � 0.204

1 � ��c
�
1 � ��c
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As found by an observer
moving with the muon, the
ground is L below it, which is
a shorter distance than L0.

As found by observer
on the ground, the
muon altitude is L0.

L0

L

Figure 1.9 Muon decay as seen by different observers. The muon size is greatly exaggerated here; in fact,
the muon seems likely to be a point particle with no extension in space.

Although its lifetime is only t0 � 2.2 �s in its own frame of reference, a muon can
reach the ground from altitudes of as much as 10.4 km because in the frame in which
these altitudes are measured, the muon lifetime is t � 34.8 �s.

What if somebody were to accompany a muon in its descent at � � 0.998c, so that
to him or her the muon is at rest? The observer and the muon are now in the same
frame of reference, and in this frame the muon’s lifetime is only 2.2 �s. To the observer,
the muon can travel only 0.66 km before decaying. The only way to account for the
arrival of the muon at ground level is if the distance it travels, from the point of view
of an observer in the moving frame, is shortened by virtue of its motion (Fig. 1.9). The
principle of relativity tells us the extent of the shortening—it must be by the same 

factor of �1 � �2��c2� that the muon lifetime is extended from the point of view of a
stationary observer.

We therefore conclude that an altitude we on the ground find to be h0 must appear
in the muon’s frame of reference as the lower altitude

h � h0 �1 � �2��c2�

In our frame of reference the muon can travel h0 � 10.4 km because of time dilation.
In the muon’s frame of reference, where there is no time dilation, this distance is
abbreviated to
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h � (10.4 km) �1 � (0�.998c)�2�c2� � 0.66 km

As we know, a muon traveling at 0.998c goes this far in 2.2 �s.
The relativistic shortening of distances is an example of the general contraction of

lengths in the direction of motion:

L � L0 �1 � �2��c2� (1.9)

Figure 1.10 is a graph of L�L0 versus ��c. Clearly the length contraction is most
significant at speeds near that of light. A speed of 1000 km/s seems fast to us, but it
only results in a shortening in the direction of motion to 99.9994 percent of the proper
length of an object moving at this speed. On the other hand, something traveling at
nine-tenths the speed of light is shortened to 44 percent of its proper length, a
significant change.

Like time dilation, the length contraction is a reciprocal effect. To a person in a
spacecraft, objects on the earth appear shorter than they did when he or she was on

the ground by the same factor of �1 � �2��c2� that the spacecraft appears shorter to
somebody at rest. The proper length L0 found in the rest frame is the maximum length
any observer will measure. As mentioned earlier, only lengths in the direction of motion
undergo contraction. Thus to an outside observer a spacecraft is shorter in flight than
on the ground, but it is not narrower.

1.5   TWIN PARADOX

A longer life, but it will not seem longer

We are now in a position to understand the famous relativistic effect known as the
twin paradox. This paradox involves two identical clocks, one of which remains on
the earth while the other is taken on a voyage into space at the speed � and eventu-
ally is brought back. It is customary to replace the clocks with the pair of twins Dick and

Length 
contraction

1.0

0.8

0.6

0.4

0.2

0
0.001 0.01 0.1 1.0

L
/L

0

v/c

Figure 1.10 Relativistic length contraction. Only lengths in the direction of motion are affected. The
horizontal scale is logarithmic.
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Jane, a substitution that is perfectly acceptable because the processes of life—heartbeats,
respiration, and so on—constitute biological clocks of reasonable regularity.

Dick is 20 y old when he takes off on a space voyage at a speed of 0.80c to a star
20 light-years away. To Jane, who stays behind, the pace of Dick’s life is slower than
hers by a factor of

�1 � �2��c2� � �1 � (0�.80c)2��c2� � 0.60 � 60%

To Jane, Dick’s heart beats only 3 times for every 5 beats of her heart; Dick takes only
3 breaths for every 5 of hers; Dick thinks only 3 thoughts for every 5 of hers. Finally
Dick returns after 50 years have gone by according to Jane’s calendar, but to Dick the
trip has taken only 30 y. Dick is therefore 50 y old whereas Jane, the twin who stayed
home, is 70 y old (Fig. 1.11).

Where is the paradox? If we consider the situation from the point of view of Dick
in the spacecraft, Jane on the earth is in motion relative to him at a speed of 0.80c.
Should not Jane then be 50 y old when the spacecraft returns, while Dick is then
70—the precise opposite of what was concluded above?

But the two situations are not equivalent. Dick changed from one inertial frame to
a different one when he started out, when he reversed direction to head home, and
when he landed on the earth. Jane, however, remained in the same inertial frame dur-
ing Dick’s whole voyage. The time dilation formula applies to Jane’s observations of
Dick, but not to Dick’s observations of her.

To look at Dick’s voyage from his perspective, we must take into account that the
distance L he covers is shortened to

L � L0 �1 � �2��c2� � (20 light-years) �1 � (0�.80c)2��c2� � 12 light-years

To Dick, time goes by at the usual rate, but his voyage to the star has taken L�� � 15 y
and his return voyage another 15 y, for a total of 30 y. Of course, Dick’s life span has

2130

2100

2150

2100

Figure 1.11 An astronaut who returns from a space voyage will be younger than his or her twin who
remains on earth. Speeds close to the speed of light (here � � 0.8c) are needed for this effect to be
conspicuous.



not been extended to him, because regardless of Jane’s 50-y wait, he has spent only
30 y on the roundtrip.

The nonsymmetric aging of the twins has been verified by experiments in which
accurate clocks were taken on an airplane trip around the world and then compared
with identical clocks that had been left behind. An observer who departs from an in-
ertial system and then returns after moving relative to that system will always find his
or her clocks slow compared with clocks that stayed in the system.

Example 1.4

Dick and Jane each send out a radio signal once a year while Dick is away. How many signals

does Dick receive? How many does Jane receive?

Solution

On the outward trip, Dick and Jane are being separated at a rate of 0.80c. With the help of the

reasoning used to analyze the doppler effect in Sec. 1.3, we find that each twin receives signals

T1 � t0 ��� (1 y) �� � 3 y

apart. On the return trip, Dick and Jane are getting closer together at the same rate, and each

receives signals more frequently, namely

T2 � t0 ��� (1 y) �� � y

apart.

To Dick, the trip to the star takes 15 y, and he receives 15�3 � 5 signals from Jane. During

the 15 y of the return trip, Dick receives 15�(1�3) � 45 signals from Jane, for a total of 50 sig-

nals. Dick therefore concludes that Jane has aged by 50 y in his absence. Both Dick and Jane

agree that Jane is 70 y old at the end of the voyage.

To Jane, Dick needs L0�� � 25 y for the outward trip. Because the star is 20 light-years away.

Jane on the earth continues to receive Dick’s signals at the original rate of one every 3 y for 20 y

after Dick has arrived at the star. Hence Jane receives signals every 3 y for 25 y � 20 y � 45 y

to give a total of 45�3 � 15 signals. (These are the 15 signals Dick sent out on the outward

trip.) Then, for the remaining 5 y of what is to Jane a 50-y voyage, signals arrive from Dick at

the shorter intervals of 1�3 y for an additional 5�(1�3) � 15 signals. Jane thus receives 30 sig-

nals in all and concludes that Dick has aged by 30 y during the time he was away—which agrees

with Dick’s own figure. Dick is indeed 20 y younger than his twin Jane on his return.

1.6   ELECTRICITY AND MAGNETISM

Relativity is the bridge

One of the puzzles that set Einstein on the trail of special relativity was the connec-
tion between electricity and magnetism, and the ability of his theory to clarify the na-
ture of this connection is one of its triumphs.

Because the moving charges (usually electrons) whose interactions give rise to many
of the magnetic forces familiar to us have speeds far smaller than c, it is not obvious
that the operation of an electric motor, say, is based on a relativistic effect. The idea
becomes less implausible, however, when we reflect on the strength of electric forces.
The electric attraction between the electron and proton in a hydrogen atom, for instance,

1
�
3

1 � 0.80
�
1 � 0.80

1 � ��c
�
1 � ��c

1 � 0.80
�
1 � 0.80

1 � ��c
�
1 � ��c
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is 1039 times greater than the gravitational attraction between them. Thus even a small
change in the character of these forces due to relative motion, which is what magnetic
forces represent, may have large consequences. Furthermore, although the effective
speed of an individual electron in a current-carrying wire (�1 mm/s) is less than that
of a tired caterpillar, there may be 1020 or more moving electrons per centimeter in
such a wire, so the total effect may be considerable.

Although the full story of how relativity links electricity and magnetism is mathe-
matically complex, some aspects of it are easy to appreciate. An example is the origin
of the magnetic force between two parallel currents. An important point is that, like
the speed of light,

Electric charge is relativistically invariant.

A charge whose magnitude is found to be Q in one frame of reference is also Q in all
other frames.

Let us look at the two idealized conductors shown in Fig. 1.12a. They contain equal
numbers of positive and negative charges at rest that are equally spaced. Because the
conductors are electrically neutral, there is no force between them.

Figure 1.12b shows the same conductors when they carry currents iI and iII in the
same direction. The positive charges move to the right and the negative charges move to
the left, both at the same speed � as seen from the laboratory frame of reference. (Actual
currents in metals consist of flows of negative electrons only, of course, but the electri-
cally equivalent model here is easier to analyze and the results are the same.) Because 

the charges are moving, their spacing is smaller than before by the factor �1 � �2��c2�.
Since � is the same for both sets of charges, their spacings shrink by the same amounts,
and both conductors remain neutral to an observer in the laboratory. However, the con-
ductors now attract each other. Why?

Let us look at conductor II from the frame of reference of one of the negative
charges in conductor I. Because the negative charges in II appear at rest in this frame,
their spacing is not contracted, as in Fig. 1.12c. On the other hand, the positive charges
in II now have the velocity 2�, and their spacing is accordingly contracted to a greater
extent than they are in the laboratory frame. Conductor II therefore appears to have
a net positive charge, and an attractive force acts on the negative charge in I.

Next we look at conductor II from the frame of reference of one of the positive
charges in conductor I. The positive charges in II are now at rest, and the negative
charges there move to the left at the speed 2�. Hence the negative charges are closer
together than the positive ones, as in Fig. 1.12d, and the entire conductor appears neg-
atively charged. An attractive force therefore acts on the positive charges in I.

Identical arguments show that the negative and positive charges in II are attracted
to I. Thus all the charges in each conductor experience forces directed toward the other
conductor. To each charge, the force on it is an “ordinary” electric force that arises be-
cause the charges of opposite sign in the other conductor are closer together than
the charges of the same sign, so the other conductor appears to have a net charge.
From the laboratory frame the situation is less straightforward. Both conductors are
electrically neutral in this frame, and it is natural to explain their mutual attraction by
attributing it to a special “magnetic” interaction between the currents.

A similar analysis explains the repulsive force between parallel conductors that carry
currents in opposite directions. Although it is convenient to think of magnetic forces
as being different from electric ones, they both result from a single electromagnetic in-
teraction that occurs between charged particles.

Clearly a current-carrying conductor that is electrically neutral in one frame of
reference might not be neutral in another frame. How can this observation be reconciled
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with charge invariance? The answer is that we must consider the entire circuit of which
the conductor is a part. Because the circuit must be closed for a current to occur in it,
for every current element in one direction that a moving observer finds to have, say, a
positive charge, there must be another current element in the opposite direction which
the same observer finds to have a negative charge. Hence magnetic forces always act
between different parts of the same circuit, even though the circuit as a whole appears
electrically neutral to all observers.

The preceding discussion considered only a particular magnetic effect. All other
magnetic phenomena can also be interpreted on the basis of Coulomb’s law, charge in-
variance, and special relativity, although the analysis is usually more complicated.

Positive charge Negative charge

I

II

I

II

I

II

I

II

Force on positive charge

Force on negative charge

Force on II
Force on I

2v

v

iI

v

2v

iII

(a)

(b)

(c)

(d)

v

v

Figure 1.12 How the magnetic attraction between parallel currents arises. (a) Idealized parallel con-
ductors that contain equal numbers of positive and negative charges. (b) When the conductors carry
currents, the spacing of their moving charges undergoes a relativistic contraction as seen from the lab-
oratory. The conductors attract each other when iI and iII are in the same direction. (c) As seen by a
negative charge in I, the negative charges in II are at rest whereas the positive charges are in motion.
The contracted spacing of the latter leads to a net positive charge in II that attracts the negative charge
in I. (d) As seen by a positive charges in I, the positive charges in II are at rest whereas the negative
charges are in motion. The contracted spacing of the latter leads to a net negative charge on II that
attrats the positive charge in I. The contracted spacings in b, c, and d are greatly exaggerated.
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1.7   RELATIVISTIC MOMENTUM

Redefining an important quantity

In classical mechanics linear momentum p � mv is a useful quantity because it is con-
served in a system of particles not acted upon by outside forces. When an event such
as a collision or an explosion occurs inside an isolated system, the vector sum of the
momenta of its particles before the event is equal to their vector sum afterward. We
now have to ask whether p � mv is valid as the definition of momentum in inertial
frames in relative motion, and if not, what a relativistically correct definition is.

To start with, we require that p be conserved in a collision for all observers in rel-
ative motion at constant velocity. Also, we know that p � mv holds in classical
mechanics, that is, for � �� c. Whatever the relativistically correct p is, then, it must
reduce to mv for such velocities.

Let us consider an elastic collision (that is, a collision in which kinetic energy is
conserved) between two particles A and B, as witnessed by observers in the reference
frames S and S	 which are in uniform relative motion. The properties of A and B are
identical when determined in reference frames in which they are at rest. The frames S
and S	 are oriented as in Fig. 1.13, with S	 moving in the �x direction with respect
to S at the velocity v.

Before the collision, particle A had been at rest in frame S and particle B in frame
S	. Then, at the same instant, A was thrown in the �y direction at the speed VA while
B was thrown in the �y	 direction at the speed V	B, where

VA � V	B (1.10)

Hence the behavior of A as seen from S is exactly the same as the behavior of B as seen
from S	.

When the two particles collide, A rebounds in the �y direction at the speed VA,
while B rebounds in the �y	 direction at the speed V	B. If the particles are thrown from
positions Y apart, an observer in S finds that the collision occurs at y � �

1
2

�Y and one in
S	 finds that it occurs at y	 � y � �

1
2

�Y. The round-trip time T0 for A as measured in
frame S is therefore

T0 � (1.11)

and it is the same for B in S	:

T0 �

In S the speed VB is found from

VB � (1.12)

where T is the time required for B to make its round trip as measured in S. In S	, however,
B’s trip requires the time T0, where

T � (1.13)
T0

��
�1 � �2��c2�

Y
�
T

Y
�
V	B

Y
�
VA
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according to our previous results. Although observers in both frames see the same
event, they disagree about the length of time the particle thrown from the other frame
requires to make the collision and return.

Replacing T in Eq. (1.12) with its equivalent in terms of T0, we have

VB �
Y �1 � �2��c2�
��

T0

A

B

A

B

Collision as seen from frame S:

Collision as seen from frame S′:

S′
x′

z′

y′

v

S

y

z

x

Y

B

A

V′B

VA

Figure 1.13 An elastic collision as observed in two different frames of reference. The balls are initially
Y apart, which is the same distance in both frames since S	 moves only in the x direction.
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From Eq. (1.11), VA �

If we use the classical definition of momentum, p � mv, then in frame S

pA � mAVA � mA� �

pB � mBVB � mB �1 � �2��c2�� �
This means that, in this frame, momentum will not be conserved if mA � mB, where
mA and mB are the masses as measured in S. However, if

mB � (1.14)

then momentum will be conserved.
In the collision of Fig. 1.13 both A and B are moving in both frames. Suppose now

that VA and V	B are very small compared with �, the relative velocity of the two frames.
In this case an observer in S will see B approach A with the velocity �, make a glanc-
ing collision (since V	B �� �), and then continue on. In the limit of VA � 0, if m is the
mass in S of A when A is at rest, then mA � m. In the limit of V	B � 0, if m(�) is the
mass in S of B, which is moving at the velocity �, then mB � m(�). Hence Eq. (1.14)
becomes

m(�) � (1.15)

We can see that if linear momentum is defined as

p � (1.16)

then conservation of momentum is valid in special relativity. When � �� c, Eq. (1.16)
becomes just p � mv, the classical momentum, as required. Equation (1.16) is often
written as

p � �mv (1.17)

where

� � (1.18)

In this definition, m is the proper mass (or rest mass) of an object, its mass when
measured at rest relative to an observer. (The symbol � is the Greek letter gamma.)

1
��
�1 � �2��c2�

Relativistic
momentum

mv
��
�1 � �2��c2�

Relativistic
momentum

m
��
�1 � �2��c2�

mA
��
�1 � �2��c2�

Y
�
T0

Y
�
T0

Y
�
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Figure 1.14 shows how p varies with ��c for both �m� and m�. When ��c is small,
m� and �m� are very nearly the same. (For � � 0.01c, the difference is only 0.005
percent; for � � 0.1c, it is 0.5 percent, still small). As � approaches c, however, the
curve for �m� rises more and more steeply (for � � 0.9c, the difference is 229 percent).
If � � c, p � �m� � 
, which is impossible. We conclude that no material object can
travel as fast as light.

But what if a spacecraft moving at �1 � 0.5c relative to the earth fires a projectile
at �2 � 0.5c in the same direction? We on earth might expect to observe the projec-
tile’s speed as �1 � �2 � c. Actually, as discussed in Appendix I to this chapter, velocity
addition in relativity is not so simple a process, and we would find the projectile’s speed
to be only 0.8c in such a case.

Relativistic Second Law

In relativity Newton’s second law of motion is given by

F � � (�mv) (1.19)

This is more complicated than the classical formula F � ma because � is a function
of �. When � �� c, � is very nearly equal to 1, and F is very nearly equal to mv, as it
should be.

d
�
dt

dp
�
dt

Relativistic
second law
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“Relativistic Mass”

W e could alternatively regard the increase in an object’s momentum over the classical value

as being due to an increase in the object’s mass. Then we would call m0 � m the rest

mass of the object and m � m(�) from Eq. (1.17) its relativistic mass, its mass when moving rel-

ative to an observer, so that p � mv. This is the view often taken in the past, at one time even

by Einstein. However, as Einstein later wrote, the idea of relativistic mass is “not good” because

“no clear definition can be given. It is better to introduce no other mass concept than the ‘rest

mass’ m.” In this book the term mass and the symbol m will always refer to proper (or rest)

mass, which will be considered relativistically invariant.

4mc

3mc

2mc

mc

0 0.2 0.4 0.6 0.8 1.0

Relativistic momentum

γmv

Classical momentum mv

L
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r 
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m
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Velocity ratio v/c

Figure 1.14 The momentum of an object moving at the velocity � relative to an observer. The mass
m of the object is its value when it is at rest relative to the observer. The object's velocity can never
reach c because its momentum would then be infinite, which is impossible. The relativistic momen-
tum �m� is always correct; the classical momentum m� is valid for velocities much smaller than c.



Example 1.5

Find the acceleration of a particle of mass m and velocity v when it is acted upon by the con-

stant force F, where F is parallel to v.

Solution

From Eq. (1.19), since a � d��dt,

F � (�m�) � m � �
� m	 � 

�

We note that F is equal to �3ma, not to �ma. Merely replacing m by �m in classical formulas

does not always give a relativistically correct result.

The acceleration of the particle is therefore

a � (1 � �2�c2)3�2

Even though the force is constant, the acceleration of the particle decreases as its velocity in-

creases. As �S c, aS 0, so the particle can never reach the speed of light, a conclusion we

expect.

1.8   MASS AND ENERGY

Where E0 � mc2 comes from

The most famous relationship Einstein obtained from the postulates of special
relativity—how powerful they turn out to be!—concerns mass and energy. Let us see
how this relationship can be derived from what we already know.

As we recall from elementary physics, the work W done on an object by a con-
stant force of magnitude F that acts through the distance s, where F is in the same
direction as s, is given by W � Fs. If no other forces act on the object and the ob-
ject starts from rest, all the work done on it becomes kinetic energy KE, so KE � Fs.
In the general case where F need not be constant, the formula for kinetic energy is
the integral

KE � �s

0 
F ds

In nonrelativistic physics, the kinetic energy of an object of mass m and speed � is
KE � �

1
2

�m�2. To find the correct relativistic formula for KE we start from the relativistic
form of the second law of motion, Eq. (1.19), which gives

KE � �s

0 
ds � �m�

0
� d(�m�) � ��

0 
� d� �

m�
��
�1 � �2��c2�

d(�m�)
�

dt

F
�
m

ma
��
(1 � �2�c2)3�2

d�
�
dt

�2�c2

��
(1 � �2�c2)3�2

1
��
�1 � �2��c2�

�
��
�1 � �2��c2�

d
�
dt

d
�
dt
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Integrating by parts (� x dy � xy � � y dx),

KE � � m ��

0

� � 	mc2 �1 � �2��c2�

�

0

� � mc2

Kinetic energy KE � �mc2 � mc2 � (� � 1)mc2 (1.20)

This result states that the kinetic energy of an object is equal to the difference between
�mc2 and mc2. Equation (1.20) may be written

Total energy E � �mc2 � mc2 � KE (1.21)

If we interpret �mc2 as the total energy E of the object, we see that when it is at rest
and KE � 0, it nevertheless possesses the energy mc2. Accordingly mc2 is called the
rest energy E0 of something whose mass is m. We therefore have

E � E0 � KE

where

Rest energy E0 � mc2 (1.22)

If the object is moving, its total energy is

Total energy E � �mc2 � (1.23)

Example 1.6

A stationary body explodes into two fragments each of mass 1.0 kg that move apart at speeds

of 0.6c relative to the original body. Find the mass of the original body.

Solution

The rest energy of the original body must equal the sum of the total energies of the fragments. Hence

E0 � mc2 � �m1c2 � �m2c2 � �

and

m � � � 2.5 kg

Since mass and energy are not independent entities, their separate conservation prin-
ciples are properly a single one—the principle of conservation of mass energy. Mass
can be created or destroyed, but when this happens, an equivalent amount of energy
simultaneously vanishes or comes into being, and vice versa. Mass and energy are dif-
ferent aspects of the same thing.

(2)(1.0 kg)
��
�1 � (0�.60)2�

E0�
c2

m2c2

��
�1 � �2

2��c2�
m1c2

��
�1 � �2

1��c2�

mc2

��
�1 � �2��c2�

mc2

��
�1 � �2��c2�

m�2

��
�1 � �2��c2�

� d�
��
�1 � �2��c2�

m�2

��
�1 � �2��c2�
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It is worth emphasizing the difference between a conserved quantity, such as total
energy, and an invariant quantity, such as proper mass. Conservation of E means that,
in a given reference frame, the total energy of some isolated system remains the same
regardless of what events occur in the system. However, the total energy may be dif-
ferent as measured from another frame. On the other hand, the invariance of m means
that m has the same value in all inertial frames.

The conversion factor between the unit of mass (the kilogram, kg) and the unit of
energy (the joule, J) is c2, so 1 kg of matter—the mass of this book is about that—has
an energy content of mc2 � (1 kg)(3 � 108 m/s)2 � 9 � 1016 J. This is enough to
send a payload of a million tons to the moon. How is it possible for so much energy
to be bottled up in even a modest amount of matter without anybody having been
aware of it until Einstein’s work?

In fact, processes in which rest energy is liberated are very familiar. It is simply that
we do not usually think of them in such terms. In every chemical reaction that evolves
energy, a certain amount of matter disappears, but the lost mass is so small a fraction
of the total mass of the reacting substances that it is imperceptible. Hence the “law” of
conservation of mass in chemistry. For instance, only about 6 � 10�11 kg of matter
vanishes when 1 kg of dynamite explodes, which is impossible to measure directly, but
the more than 5 million joules of energy that is released is hard to avoid noticing.

Example 1.7

Solar energy reaches the earth at the rate of about 1.4 kW per square meter of surface perpen-

dicular to the direction of the sun (Fig. 1.15). By how much does the mass of the sun decrease

per second owing to this energy loss? The mean radius of the earth’s orbit is 1.5 � 1011 m.

Solution

The surface area of a sphere of radius r is A � 4�r2. The total power radiated by the sun, which

is equal to the power received by a sphere whose radius is that of the earth’s orbit, is therefore

P � A � (4�r2) � (1.4 � 103 W/m2)(4�)(1.5 � 1011 m)2 � 4.0 � 1026 W

Thus the sun loses E0 � 4.0 � 1026 J of rest energy per second, which means that the sun’s rest

mass decreases by

m � � � 4.4 � 109 kg

per second. Since the sun’s mass is 2.0 � 1030 kg, it is in no immediate danger of running out

of matter. The chief energy-producing process in the sun and most other stars is the conversion

of hydrogen to helium in its interior. The formation of each helium nucleus is accompanied by

the release of 4.0 � 10�11 J of energy, so 1037 helium nuclei are produced in the sun per second.

4.0 � 1026 J
��
(3.0 � 108 m/s)2

E0
�
c2

P
�
A

P
�
A
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Kinetic Energy at Low Speeds

When the relative speed � is small compared with c, the formula for kinetic energy
must reduce to the familiar �

1
2

� m�2, which has been verified by experiment at such speeds.
Let us see if this is true. The relativistic formula for kinetic energy is

KE � �mc2
� mc2

� � mc2
(1.20)

Since �2�c2
�� 1, we can use the binomial approximation (1 � x)n � 1 � nx, valid

for |x| �� 1, to obtain

� 1 � � �� c

Thus we have the result

KE � �1 � �mc2
� mc2 � m�2 � �� c

At low speeds the relativistic expression for the kinetic energy of a moving object
does indeed reduce to the classical one. So far as is known, the correct formulation of
mechanics has its basis in relativity, with classical mechanics representing an approxi-
mation that is valid only when � �� c. Figure 1.16 shows how the kinetic energy of

1
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��
�1 � �2	�c2	
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�1 � �2	�c2	

Kinetic
energy

Figure 1.16 A comparison between the classical and relativistic formulas for the ratio between kinetic
energy KE of a moving body and its rest energy mc2. At low speeds the two formulas give the same
result, but they diverge at speeds approaching that of light. According to relativistic mechanics, a body
would need an infinite kinetic energy to travel with the speed of light, whereas in classical mechan-
ics it would need only a kinetic energy of half its rest energy to have this speed.
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a moving object varies with its speed according to both classical and relativistic
mechanics.

The degree of accuracy required is what determines whether it is more appropri-
ate to use the classical or to use the relativistic formulas for kinetic energy. For in-
stance, when � � 107 m/s (0.033c), the formula �

1

2
�m�2 understates the true kinetic

energy by only 0.08 percent; when � � 3 � 107 m/s (0.1c), it understates the true
kinetic energy by 0.8 percent; but when � � 1.5 � 108 m/s (0.5c), the understate-
ment is a significant 19 percent; and when � � 0.999c, the understatement is a whop-
ping 4300 percent. Since 107 m/s is about 6310 mi/s, the nonrelativistic formula
�
1

2
�m�2 is entirely satisfactory for finding the kinetic energies of ordinary objects, and
it fails only at the extremely high speeds reached by elementary particles under cer-
tain circumstances.

1.9 ENERGY AND MOMENTUM

How they fit together in relativity

Total energy and momentum are conserved in an isolated system, and the rest energy
of a particle is invariant. Hence these quantities are in some sense more fundamental
than velocity or kinetic energy, which are neither. Let us look into how the total en-
ergy, rest energy, and momentum of a particle are related.

We begin with Eq. (1.23) for total energy,

Total energy E � (1.23)

and square it to give

E2 �

From Eq. (1.17) for momentum,

Momentum p � (1.17)

we find that

p2c2 �

Now we subtract p2c2 from E2:

E2 � p2c2 � �

� (mc2)2

m2c4(1 � �2�c2)
��

1 � �2�c2

m2c4 � m2�2c2

��
1 � �2�c2

m2�2c2

��
1 � �2�c2

m�
��
�1 � �2��c2�

m2c4

��
1 � �2�c2

mc2

��
�1 � �2��c2�
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Hence

E2 � (mc2)2 � p2c2 (1.24)

which is the formula we want. We note that, because mc2 is invariant, so is E2 � p2c2:
this quantity for a particle has the same value in all frames of reference.

For a system of particles rather than a single particle, Eq. (1.24) holds provided
that the rest energy mc2—and hence mass m—is that of the entire system. If the
particles in the system are moving with respect to one another, the sum of their
individual rest energies may not equal the rest energy of the system. We saw this in
Example 1.7 when a stationary body of mass 2.5 kg exploded into two smaller bodies,
each of mass 1.0 kg, that then moved apart. If we were inside the system, we would
interpret the difference of 0.5 kg of mass as representing its conversion into kinetic
energy of the smaller bodies. But seen as a whole, the system is at rest both before
and after the explosion, so the system did not gain kinetic energy. Therefore the rest
energy of the system includes the kinetic energies of its internal motions and it cor-
responds to a mass of 2.5 kg both before and after the explosion.

In a given situation, the rest energy of an isolated system may be greater than, the
same as, or less than the sum of the rest energies of its members. An important case
in which the system rest energy is less than the rest energies of its members is that of
a system of particles held together by attractive forces, such as the neutrons and pro-
tons in an atomic nucleus. The rest energy of a nucleus (except that of ordinary
hydrogen, which is a single proton) is less than the total of the rest energies of its 
constituent particles. The difference is called the binding energy of the nucleus. To break
a nucleus up completely calls for an amount of energy at least equal to its binding
energy. This topic will be explored in detail in Sec. 11.4. For the moment it is inter-
esting to note how large nuclear binding energies are—nearly 1012 kJ per kg of
nuclear matter is typical. By comparison, the binding energy of water molecules in liq-
uid water is only 2260 kJ/kg; this is the energy needed to turn 1 kg of water at 100°C
to steam at the same temperature.

Massless Particles

Can a massless particle exist? To be more precise, can a particle exist which has no rest
mass but which nevertheless exhibits such particlelike properties as energy and mo-
mentum? In classical mechanics, a particle must have rest mass in order to have en-
ergy and momentum, but in relativistic mechanics this requirement does not hold.

From Eqs. (1.17) and (1.23), when m � 0 and � �� c, it is clear that E � p � 0.
A massless particle with a speed less than that of light can have neither energy nor mo-
mentum. However, when m � 0 and � � c, E � 0�0 and p � 0�0, which are inde-
terminate: E and p can have any values. Thus Eqs. (1.17) and (1.23) are consistent
with the existence of massless particles that possess energy and momentum provided
that they travel with the speed of light.

Equation (1.24) gives us the relationship between E and p for a particle with m � 0:

Massless particle E � pc (1.25)

The conclusion is not that massless particles necessarily occur, only that the laws
of physics do not exclude the possibility as long as � � c and E � pc for them. In fact,

Energy and
momentum
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a massless particle—the photon—indeed exists and its behavior is as expected, as we
shall find in Chap. 2.

Electronvolts

In atomic physics the usual unit of energy is the electronvolt (eV), where 1 eV is the
energy gained by an electron accelerated through a potential difference of 1 volt. Since
W � QV,

1 eV � (1.602 � 10�19 C)(1.000 V) � 1.602 � 10�19 J

Two quantities normally expressed in electronvolts are the ionization energy of an atom
(the work needed to remove one of its electrons) and the binding energy of a mole-
cule (the energy needed to break it apart into separate atoms). Thus the ionization
energy of nitrogen is 14.5 eV and the binding energy of the hydrogen molecule H2 is
4.5 eV. Higher energies in the atomic realm are expressed in kiloelectronvolts (keV),
where 1 keV � 103 eV.

In nuclear and elementary-particle physics even the keV is too small a unit in most
cases, and the megaelectronvolt (MeV) and gigaelectronvolt (GeV) are more appro-
priate, where

1 MeV � 106 eV 1 GeV � 109 eV

An example of a quantity expressed in MeV is the energy liberated when the nucleus
of a certain type of uranium atom splits into two parts. Each such fission event releases
about 200 MeV; this is the process that powers nuclear reactors and weapons.

The rest energies of elementary particles are often expressed in MeV and GeV and
the corresponding rest masses in MeV/c2 and GeV/c2. The advantage of the latter units
is that the rest energy equivalent to a rest mass of, say, 0.938 GeV/c2 (the rest mass of
the proton) is just E0 � mc2 � 0.938 GeV. If the proton’s kinetic energy is 5.000 GeV,
finding its total energy is simple:

E � E0 � KE � (0.938 � 5.000) GeV � 5.938 GeV

In a similar way the MeV/c and GeV/c are sometimes convenient units of linear mo-
mentum. Suppose we want to know the momentum of a proton whose speed is 0.800c.
From Eq. (1.17) we have

p � �

� � 1.25 GeV�c

Example 1.8

An electron (m � 0.511 MeV/c2) and a photon (m � 0) both have momenta of 2.000 MeV/c.

Find the total energy of each.

0.750 GeV�c
��

0.600

(0.938 GeV�c2)(0.800c)
���

�1 � (0�.800c)�2�c2�
m�

��
�1 � �2��c2�
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Solution 

(a) From Eq. (1.24) the electron’s total energy is 

E � �m2c4 �� p2c2� � �(0.511� MeV�c�2)2c4 �� (2.000� MeV�c�)2c2�
� �(0.511� MeV)�2 � (2�.000 M�eV)2� � 2.064 MeV

(b) From Eq. (1.25) the photon’s total energy is 

E � pc � (2.000 MeV�c)c � 2.000 MeV

1.10 GENERAL RELATIVITY

Gravity is a warping of spacetime

Special relativity is concerned only with inertial frames of reference, that is, frames that
are not accelerated. Einstein’s 1916 general theory of relativity goes further by in-
cluding the effects of accelerations on what we observe. Its essential conclusion is that
the force of gravity arises from a warping of spacetime around a body of matter
(Fig. 1.17). As a result, an object moving through such a region of space in general
follows a curved path rather than a straight one, and may even be trapped there.

The principle of equivalence is central to general relativity:

An observer in a closed laboratory cannot distinguish between the effects pro-
duced by a gravitational field and those produced by an acceleration of the 
laboratory.

This principle follows from the experimental observation (to better than 1 part in 1012)
that the inertial mass of an object, which governs the object’s acceleration when a force
acts on it, is always equal to its gravitational mass, which governs the gravitational
force another object exerts on it. (The two masses are actually proportional; the con-
stant of proportionality is set equal to 1 by an appropriate choice of the constant of
gravitation G.)
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Figure 1.17 General relativity pictures gravity as a warping of spacetime due to the presence of a body
of matter. An object nearby experiences an attractive force as a result of this distortion, much as a
marble rolls toward the bottom of a depression in a rubber sheet. To paraphrase J. A. Wheeler, space-
time tells mass how to move, and mass tells spacetime how to curve.



Gravity and Light

It follows from the principle of equivalence that light should be subject to gravity. If a
light beam is directed across an accelerated laboratory, as in Fig. 1.18, its path relative
to the laboratory will be curved. This means that, if the light beam is subject to the
gravitational field to which the laboratory’s acceleration is equivalent, the beam would
follow the same curved path.

According to general relativity, light rays that graze the sun should have their paths
bent toward it by 0.005°—the diameter of a dime seen from a mile away. This pre-
diction was first confirmed in 1919 by photographs of stars that appeared in the sky
near the sun during an eclipse, when they could be seen because the sun’s disk was
covered by the moon. The photographs were then compared with other photographs
of the same part of the sky taken when the sun was in a distant part of the sky (Fig. 1.19).
Einstein became a world celebrity as a result.

Because light is deflected in a gravitational field, a dense concentration of mass—
such as a galaxy of stars—can act as a lens to produce multiple images of a distant
light source located behind it (Fig. 1.20). A quasar, the nucleus of a young galaxy,
is brighter than 100 billion stars but is no larger than the solar system. The first
observation of gravitational lensing was the discovery in 1979 of what seemed to
be a pair of nearby quasars but was actually a single one whose light was deviated
by an intervening massive object. Since then a number of other gravitational lenses
have been found; the effect occurs in radio waves from distant sources as well as in
light waves.

The interaction between gravity and light also gives rise to the gravitational red shift
and to black holes, topics that are considered in Chap. 2.
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Accelerated laboratoryLaboratory in
gravitational field

a = –g

g

Figure 1.18 According to the principle of equivalence, events that take place in an accelerated
laboratory cannot be distinguished from those which take place in a gravitational field. Hence the
deflection of a light beam relative to an observer in an accelerated laboratory means that light must
be similarly deflected in a gravitational field.



Other Findings of General Relativity

A further success of general relativity was the clearing up of a long-standing puzzle in
astronomy. The perihelion of a planetary orbit is the point in the orbit nearest the sun.
Mercury’s orbit has the peculiarity that its perihelion shifts (precesses) about 1.6° per
century (Fig. 1.21). All but 43� (1� � 1 arc second � �

36
1
00
� of a degree) of this shift is

due to the attractions of other planets, and for a while the discrepancy was used as
evidence for an undiscovered planet called Vulcan whose orbit was supposed to lie
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Figure 1.19 Starlight passing near the sun is deflected by its strong gravitational field. The deflection
can be measured during a solar eclipse when the sun’s disk is obscured by the moon.
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Figure 1.20 A gravitational lens. Light and radio waves from a source such as a quasar are deviated by a massive object such as a
galaxy so that they seem to come from two or more identical sources. A number of such gravitational lenses have been identified.



inside that of Mercury. When gravity is weak, general relativity gives very nearly the
same results as Newton’s formula F � Gm1m2�r2. But Mercury is close to the sun and
so moves in a strong gravitational field, and Einstein was able to show from general
relativity that a precession of 43� per century was to be expected for its orbit.

The existence of gravitational waves that travel with the speed of light was the
prediction of general relativity that had to wait the longest to be verified. To visualize
gravitational waves, we can think in terms of the model of Fig. 1.17 in which two-
dimensional space is represented by a rubber sheet distorted by masses embedded in
it. If one of the masses vibrates, waves will be sent out in the sheet that set other masses
in vibration. A vibrating electric charge similarly sends out electromagnetic waves that
excite vibrations in other charges.

A big difference between the two kinds of waves is that gravitational waves are ex-
tremely weak, so that despite much effort none have as yet been directly detected.
However, in 1974 strong evidence for gravitational waves was found in the behavior
of a system of two nearby stars, one a pulsar, that revolve around each other. A pulsar
is a very small, dense star, composed mainly of neutrons, that spins rapidly and sends
out flashes of light and radio waves at a regular rate, much as the rotating beam of a
lighthouse does (see Sec. 9.11). The pulsar in this particular binary system emits pulses
every 59 milliseconds (ms), and it and its companion (probably another neutron star)
have an orbital period of about 8 h. According to general relativity, such a system
should give off gravitational waves and lose energy as a result, which would reduce
the orbital period as the stars spiral in toward each other. A change in orbital period
means a change in the arrival times of the pulsar’s flashes, and in the case of the ob-
served binary system the orbital period was found to be decreasing at 75 ms per year.
This is so close to the figure that general relativity predicts for the system that there
seems to be no doubt that gravitational radiation is responsible. The 1993 Nobel Prize
in physics was awarded to Joseph Taylor and Russell Hulse for this work.

Much more powerful sources of gravitational waves ought to be such events as two
black holes colliding and supernova explosions in which the remnant star cores col-
lapse into neutron stars (again, see Sec. 9.11). A gravitational wave that passes through
a body of matter will cause distortions to ripple through it due to fluctuations in the
gravitational field. Because gravitational forces are feeble—the electric attraction be-
tween a proton and an electron is over 1039 times greater than the gravitational at-
traction between them—such distortions at the earth induced by gravitational waves
from a supernova in our galaxy (which occurs an average of once every 30 years or
so) would amount to only about 1 part in 1018, even less for a more distant super-
nova. This corresponds to a change in, say, the height of a person by well under the
diameter of an atomic nucleus, yet it seems to be detectable—just—with current
technology.

In one method, a large metal bar cooled to a low temperature to minimize the ran-
dom thermal motions of its atoms is monitored by sensors for vibrations due to grav-
itational waves. In another method, an interferometer similar to the one shown in
Fig. 1.2 with a laser as the light source is used to look for changes in the lengths of
the arms to which the mirrors are attached. Instruments of both kinds are operating,
thus far with no success.

A really ambitious scheme has been proposed that would use six spacecraft in or-
bit around the sun placed in pairs at the corners of a triangle whose sides are 5 million
kilometers (km) long. Lasers, mirrors, and sensors in the spacecraft would detect
changes in their spacings resulting from the passing of a gravitational wave. It may only
be a matter of time before gravitational waves will be providing information about a
variety of cosmic disturbances on the largest scale.
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Figure 1.21 The precession of the
perihelion of Mercury's orbit.
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Appendix I  to  Chapter  1

The Lorentz Transformation

S
uppose we are in an inertial frame of reference S and find the coordinates of
some event that occurs at the time t are x, y, z. An observer located in a dif-
ferent inertial frame S	 which is moving with respect to S at the constant ve-

locity v will find that the same event occurs at the time t	 and has the coordinates x	,
y	, z	. (In order to simplify our work, we shall assume that v is in the �x direction,
as in Fig. 1.22.) How are the measurements x, y, z, t related to x	, y	, z	, t	?

Galilean Transformation

Before special relativity, transforming measurements from one inertial system to an-
other seemed obvious. If clocks in both systems are started when the origins of S and
S	 coincide, measurements in the x direction made is S will be greater than those made
in S	 by the amount � t, which is the distance S	 has moved in the x direction. That is,

x	 � x � � t (1.26)

There is no relative motion in the y and z directions, and so

y	 � y (1.27)

S

y

z

x

S′
x′

z′

y′

v

Figure 1.22 Frame S	 moves in the �x direction with the speed � relative to frame S. The Lorentz
transformation must be used to convert measurements made in one of these frames to their equivalents
in the other.
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z	 � z (1.28)

In the absence of any indication to the contrary in our everyday experience, we fur-
ther assume that

t	 � t (1.29)

The set of Eqs. (1.26) to (1.29) is known as the Galilean transformation.
To convert velocity components measured in the S frame to their equivalents in the

S	 frame according to the Galilean transformation, we simply differentiate x	, y	, and
z	 with respect to time:

�	x � � �x � � (1.30)

�	y � � �y (1.31)

�	z � � �z (1.32)

Although the Galilean transformation and the corresponding velocity transfor-
mation seem straightforward enough, they violate both of the postulates of special
relativity. The first postulate calls for the same equations of physics in both the S
and S	 inertial frames, but the equations of electricity and magnetism become very
different when the Galilean transformation is used to convert quantities measured
in one frame into their equivalents in the other. The second postulate calls for the
same value of the speed of light c whether determined in S or S	. If we measure the
speed of light in the x direction in the S system to be c, however, in the S	 system
it will be

c	 � c � �

according to Eq. (1.30). Clearly a different transformation is required if the postulates
of special relativity are to be satisfied. We would expect both time dilation and length
contraction to follow naturally from this new transformation.

Lorentz Transformation

A reasonable guess about the nature of the correct relationship between x and x	 is

x	 � k(x � � t) (1.33)

Here k is a factor that does not depend upon either x or t but may be a function of �.
The choice of Eq. (1.33) follows from several considerations:

1 It is linear in x and x	, so that a single event in frame S corresponds to a single event
in frame S	, as it must.
2 It is simple, and a simple solution to a problem should always be explored first.
3 It has the possibility of reducing to Eq. (1.26), which we know to be correct in
ordinary mechanics.

dz	
�
dt	

dy	
�
dt	

dx	
�
dt	



Because the equations of physics must have the same form in both S and S	, we need
only change the sign of � (in order to take into account the difference in the direction
of relative motion) to write the corresponding equation for x in terms of x	 and t	:

x � k(x	 � � t	) (1.34)

The factor k must be the same in both frames of reference since there is no difference
between S and S	 other than in the sign of �.

As in the case of the Galilean transformation, there is nothing to indicate that there
might be differences between the corresponding coordinates y, y	 and z, z	 which are
perpendicular to the direction of �. Hence we again take

y	 � y (1.35)

z	 � z (1.36)

The time coordinates t and t	, however, are not equal. We can see this by substi-
tuting the value of x	 given by Eq. (1.33) into Eq. (1.34). This gives

x � k2(x � � t) � k� t	

from which we find that

t	 � kt � � � x (1.37)

Equations (1.33) and (1.35) to (1.37) constitute a coordinate transformation that
satisfies the first postulate of special relativity.

The second postulate of relativity gives us a way to evaluate k. At the instant t � 0,
the origins of the two frames of reference S and S	 are in the same place, according to
our initial conditions, and t	 � 0 then also. Suppose that a flare is set off at the com-
mon origin of S and S	 at t � t	 � 0, and the observers in each system measure the
speed with which the flare’s light spreads out. Both observers must find the same speed c
(Fig. 1.23), which means that in the S frame

x � ct (1.38)

and in the S	 frame

x	 � ct	 (1.39)

Substituting for x	 and t	 in Eq. (1.39) with the help of Eqs. (1.33) and (1.37) gives

k(x � �t) � ckt � � � cx

and solving for x,

x � � ct	 
� ct	 

1 � �

�

c
�

��

1 � ��
k

1
2� � 1� �

�

c
�

k � �
�

c
�k

��

k � ��1 �

k�

k2

��c

ckt � �kt
��

k � ��1 �

k�

k2

��c

1 � k2

�
k�

1 � k2

�
k�
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This expression for x will be the same as that given by Eq. (1.38), namely, x � ct,
provided that the quantity in the brackets equals 1. Therefore

� 1

and

k � (1.40)

Finally we put this value of k in Eqs. (1.36) and (1.40). Now we have the complete
transformation of measurements of an event made in S to the corresponding meas-
urements made in S	:

x	 � (1.41)
x � � t

��
�1 � �2��c2�

Lorentz
transformation

1
��
�1 � �2��c2�

1 � �
�

c
�

��

1 � ��
k

1
2� � 1��

�

c
�
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Figure 1.23 (a) Inertial frame S	 is a boat moving at speed � in the �x direction relative to another
boat, which is the inertial frame S. When t � t0 � 0, S	 is next to S, and x � x0 � 0. At this moment
a flare is fired from one of the boats. An observer on boat S detects light waves spreading out at speed
c from his boat. An observer on boat S	 also detects light waves spreading out at speed c from her
boat, even though S	 is moving to the right relative to S. (b) If instead a stone were dropped in the
water at t � t0 � 0, the observers would find a pattern of ripples spreading out around S at different
speeds relative to their boats. The difference between (a) and (b) is that water, in which the ripples
move, is itself a frame of reference whereas space, in which light moves, is not.
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y	 � y (1.42)

z	 � z (1.43)

t	 � (1.44)

These equations comprise the Lorentz transformation. They were first obtained
by the Dutch physicist H.A. Lorentz, who showed that the basic formulas of
electromagnetism are the same in all inertial frames only when Eqs. (1.41) to (1.44)
are used. It was not until several years later that Einstein discovered their full
significance. It is obvious that the Lorentz transformation reduces to the Galilean
transformation when the relative velocity � is small compared with the velocity of
light c.

t � �
�

c
2

x
�

��
�1 � �2��c2�

Example 1.9

Derive the relativistic length contraction using the Lorentz transformation.

Solution

Let us consider a rod lying along the x	 axis in the moving frame S	. An observer in this frame

determines the coordinates of its ends to be x	1 and x	2, and so the proper length of the rod is

L0 � x	2 � x	1

Hendrik A. Lorentz (1853–1928)

was born in Arnhem, Holland, and

studied at the University of Leyden.

At nineteen he returned to Arnhem

and taught at the high school there

while preparing a doctoral thesis that

extended Maxwell’s theory of elec-

tromagnetism to cover the details of

the refraction and reflection of light.

In 1878 he became professor of the-

oretical physics at Leyden, the first

such post in Holland, where he remained for thirty-four years

until he moved to Haarlem. Lorentz went on to reformulate

and simplify Maxwell’s theory and to introduce the idea that

electromagnetic fields are created by electric charges on the

atomic level. He proposed that the emission of light by atoms

and various optical phenomena could be traced to the mo-

tions and interactions of atomic electrons. The discovery in

1896 by Pieter Zeeman, a student of his, that the spectral

lines of atoms that radiate in a magnetic field are split 

into components of slightly different frequency confirmed

Lorentz’s work and led to a Nobel Prize for both of them in

1902.

The set of equations that enables electromagnetic quantities

in one frame of reference to be transformed into their values in

another frame of reference moving relative to the first were

found by Lorentz in 1895, although their full significance was

not realized until Einstein’s theory of special relativity ten years

afterward. Lorentz (and, independently, the Irish physicist G. F.

Fitzgerald) suggested that the negative result of the Michelson-

Morley experiment could be understood if lengths in the 

direction of motion relative to an observer were contracted. Sub-

sequent experiments showed that although such contractions

do occur, they are not the real reason for the Michelson-

Morley result, which is that there is no “ether” to serve as a

universal frame of reference.



In order to find L � x2 � x1, the length of the rod as measured in the stationary frame S at the

time t, we make use of Eq. (1.41) to give

x	1 � x	2 �

Hence L � x2 � x1 � (x	2 � x	1) �1 � �2��c2� � L0�1 � �2��c2�

This is the same as Eq. (1.9)

Inverse Lorentz Transformation

In Example 1.9 the coordinates of the ends of the moving rod were measured in the
stationary frame S at the same time t, and it was easy to use Eq. (1.41) to find L in
terms of L0 and �. If we want to examine time dilation, though, Eq. (1.44) is not con-
venient, because t1 and t2, the start and finish of the chosen time interval, must be
measured when the moving clock is at the respective different positions x1 and x2. In
situations of this kind it is easier to use the inverse Lorentz transformation, which
converts measurements made in the moving frame S	 to their equivalents in S.

To obtain the inverse transformation, primed and unprimed quantities in Eqs. (1.41)
to (1.44) are exchanged, and � is replaced by �� :

x � (1.45)

y � y	 (1.46)

z	 � z	 (1.47)

t � (1.48)

Example 1.10

Derive the formula for time dilation using the inverse Lorentz transformation.

Solution

Let us consider a clock at the point x	 in the moving frame S	. When an observer in S	 finds

that the time is t	1, an observer in S will find it to be t1, where, from Eq. (1.48),

t1 �

After a time interval of t0 (to him), the observer in the moving system finds that the time is now

t	2 according to his clock. That is,

t0 � t	2 � t	1

t	1 � �
�

c

x
2

	
�

��
�1 � �2��c2�

t	 � �
�

c

x
2

	
�

��
�1 � �2��c2�

x	 � �t	
��
�1 � �2��c2�

Inverse Lorentz
transformation

x2 � � t
��
�1 � �2��c2�

x1 � � t
��
�1 � �2��c2�
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The observer in S, however, measures the end of the same time interval to be

t2 �

so to her the duration of the interval t is

t � t2 � t1 � �

This is what we found earlier with the help of a light-pulse clock.

Velocity Addition

Special relativity postulates that the speed of light c in free space has the same value
for all observers, regardless of their relative motion.“Common sense” (which means
here the Galilean transformation) tells us that if we throw a ball forward at 10 m/s
from a car moving at 30 m/s, the ball’s speed relative to the road will be 40 m/s, the
sum of the two speeds. What if we switch on the car’s headlights when its speed is �?
The same reasoning suggests that their light, which is emitted from the reference frame
S	 (the car) in the direction of its motion relative to another frame S (the road), ought
to have a speed of c � � as measured in S. But this violates the above postulate, which
has had ample experimental verification. Common sense is no more reliable as a guide
in science than it is elsewhere, and we must turn to the Lorentz transformation equa-
tions for the correct scheme of velocity addition.

Suppose something is moving relative to both S and S	. An observer in S measures
its three velocity components to be

Vx � Vy � Vz �

while to an observer in S	 they are

V	x � V	y � V	z �

By differentiating the inverse Lorentz transformation equations for x, y, z, and t, we
obtain

dx � dy � dy	 dz � dz	 dt �

and so Vx � � �

�
d

d

x

t	

	
� � �

��

1 � �
c

�
2� �

d

d

x

t	

	
�

dx	 � � dt	
��

dt	 � �
�

c

d
2

x	
�

dx
�
dt

dt	 � �
�

c

d
2

z	
�

��
�1 � �2��c2�

dx	 � � dt	
��
�1 � �2��c2�

dz	
�
dt	

dy	
�
dt	

dx	
�
dt	

dz
�
dt

dy
�
dt

dx
�
dt

t0
��
�1 � �2��c2�

t	2 � t	1
��
�1 � �2��c2�

t	2 � �
�

c

x
2

	
�

��
�1 � �2��c2�



Vx � (1.49)

Similarly, Vy � (1.50)

Vz � (1.51)

If V	x � c, that is, if light is emitted in the moving frame S	 in its direction of motion
relative to S, an observer in frame S will measure the speed

Vx � � � � c

Thus observers in the car and on the road both find the same value for the speed of
light, as they must.

Example 1.11

Spacecraft Alpha is moving at 0.90c with respect to the earth. If spacecraft Beta is to pass Alpha

at a relative speed of 0.50c in the same direction, what speed must Beta have with respect to

the earth?

Solution

According to the Galilean transformation, Beta would need a speed relative to the earth of

0.90c � 0.50c � 1.40c, which we know is impossible. According to Eq. (1.49), however, with

V	x � 0.50c and � � 0.90c, the required speed is only

Vx � � � 0.97c

which is less than c. It is necessary to go less than 10 percent faster than a spacecraft traveling

at 0.90c in order to pass it at a relative speed of 0.50c.

Simultaneity

The relative character of time as well as space has many implications. Notably, events
that seem to take place simultaneously to one observer may not be simultaneous to
another observer in relative motion, and vice versa.

Let us examine two events—the setting off of a pair of flares, say—that occur at the
same time t0 to somebody on the earth but at the different locations x1 and x2. What
does the pilot of a spacecraft in flight see? To her, the flare at x1 and t0 appears at the
time

0.50c � 0.90c
��

1 ��
(0.90c

c

)(
2

0.50c)
�

V	x � �
�
1 � �

�

c

V
2

	x�

c(c � �)
�

c � �

c � �
�

1 � �
�

c2

c
�

V	x � �
��

1 � �
�V

c2

	x
�

V	z�1 � �2��c2�
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�

c

V
2

	x
�

V	y�1 � �2��c2�
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�

Relativistic velocity
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t	1 �

according to Eq. (1.44), while the flare at x2 and t0 appears at the time

t	2 �

Hence two events that occur simultaneously to one observer are separated by a time
interval of

t	2 � t	1�

to an observer moving at the speed � relative to the other observer. Who is right? The
question is, of course, meaningless: both observers are “right” since each simply meas-
ures what he or she sees.

Because simultaneity is a relative concept and not an absolute one, physical theo-
ries that require simultaneity in events at different locations cannot be valid. For in-
stance, saying that total energy is conserved in an isolated system does not rule out a
process in which an amount of energy E vanishes at one place while an equal amount
of energy E comes into being somewhere else with no actual transport of energy from
one place to the other. Because simultaneity is relative, some observers of the process
will find energy not being conserved. To rescue conservation of energy in the light
of special relativity, then, we have to say that, when energy disappears somewhere
and appears elsewhere, it has actually flowed from the first location to the second.
Thus energy is conserved locally everywhere, not merely when an isolated system is
considered—a much stronger statement of this principle.

� (x1 � x2)�c2

��
�1 � �2��c2�

t0 � �x2�c2

��
�1 � �2��c2�

t0 � �x1�c2

��
�1 � �2��c2�
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Spacetime

A
s we have seen, the concepts of space and time are inextricably mixed in 
nature. A length that one observer can measure with only a meter stick may
have to be measured with both a meter stick and a clock by another observer.

A convenient and elegant way to express the results of special relativity is to regard
events as occurring in a four-dimensional spacetime in which the usual three coordi-
nates x, y, z refer to space and a fourth coordinate ict refers to time, where i � ��1�.
Although we cannot visualize spacetime, it is no harder to deal with mathematically
than three-dimensional space.

The reason that ict is chosen as the time coordinate instead of just t is that the
quantity

s2 � x2 � y2 � z2 � (ct)2 (1.52)

is invariant under a Lorentz transformation. That is, if an event occurs at x, y, z, t in
an inertial frame S and at x	, y	, z	, t	 in another inertial frame S	, then

s2 � x2 � y2 � z2 � (ct)2 � x	
2 � y	

2 � z	
2 � (ct	)2

Because s2 is invariant, we can think of a Lorentz transformation merely as a rotation
in spacetime of the coordinate axes x, y, z, ict (Fig. 1.24).

The four coordinates x, y, z, ict define a vector in spacetime, and this four-vector
remains fixed in spacetime regardless of any rotation of the coordinate system—that
is, regardless of any shift in point of view from one inertial frame S to another S	.

Another four-vector whose magnitude remains constant under Lorentz transforma-
tions has the components px, py, pz, iE�c. Here px, py, pz are the usual components of
the linear momentum of a body whose total energy is E. Hence the value of

px
2 � py

2 � pz
2 �

E2

�c
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y

s

x

y′

s

x′

Figure 1.24 Rotating a two-dimensional coordinate system does not change the quantity s2 � x2

� y2 � x	2 � y	2, where s is the length of the vector s. This result can be generalized to the four-
dimensional spacetime coordinate system x, y, z, ict.
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is the same in all inertial frames even though px, py, pz and E separately may be dif-
ferent. This invariance was noted earlier in connection with Eq. (1.24); we note that
p2 � px

2 � py
2 � pz

2.
A more mathematically elaborate formulation brings together the electric and mag-

netic fields E and B into an invariant quantity called a tensor. This approach to 
incorporating special relativity into physics has led both to a deeper understanding of
natural laws and to the discovery of new phenomena and relationships.

Spacetime Intervals

The statements made at the end of Sec. 1.2 (P. 10) are easy to confirm using the idea
of spacetime. Figure 1.25 shows two events plotted on the axes x and ct. Event 1 oc-
curs at x � 0, t � 0 and event 2 occurs at x � x, t � t. The spacetime interval s
between them is defined by

(s)2 � (ct)2 � (x)2
(1.53)

The virtue of this definition is that (s)2, like the s2 of Eq. 1.52, is invariant under
Lorentz transformations. If x and t are the differences in space and time between
two events measured in the S frame and x	 and t	 are the same quantities meas-
ured in the S	 frame,

(s)2 � (ct)2 � (x)2 � (ct	)2 � (x	)2

Therefore whatever conclusions we arrive at in the S frame in which event 1 is at the
origin hold equally well in any other frame in relative motion at constant velocity.

Spacetime interval
between events

Figure 1.25 The past and future light cones in spacetime of event 1.

FUTURE LIGHT CONE

PAST LIGHT CONE

Event 1

ct
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c ∆t
Event 2

x = ct

x

x = −ct
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Now let us look into the possible relationships between events 1 and 2. Event 2 can
be related causally in some way to event 1 provided that a signal traveling slower than
the speed of light can connect these events, that is, provided that

ct � �x�

or

Timelike interval (s)2 	 0 (1.53)

An interval in which (s)2
� 0 is said to be timelike. Every timelike interval that connects

event 1 with another event lies within the light cones bounded by x � �ct in 
Fig. 1.25. All events that could have affected event 1 lie in the past light cone; all events
that event 1 is able to affect lie in the future light cone. (Events connected by timelike
intervals need not necessarily be related, of course, but it is possible for them to be 
related.)

Conversely, the criterion for there being no causal relationship between events 1
and 2 is that

ct � �x�

or

Spacelike interval (s)2 � 0 (1.54)

An interval in which (s)2 � 0 is said to be spacelike. Every event that is connected
with event 1 by a spacelike interval lies outside the light cones of event 1 and neither
has interacted with event 1 in the past nor is capable of interacting with it in the 
future; the two events must be entirely unrelated.

When events 1 and 2 can be connected with a light signal only,

ct � �x�

or

Lightlike interval s � 0 (1.55)

An interval in which s � 0 is said to be lightlike. Events that can be connected with
event 1 by lightlike intervals lie on the boundaries of the light cones.

These conclusions hold in terms of the light cones of event 2 because (s)2 is 
invariant; for example, if event 2 is inside the past light cone of event 1, event 1 is 
inside the future light cone of event 2. In general, events that lie in the future of an
event as seen in one frame of reference S lie in its future in every other frame S	, and
events that lie in the past of an event in S lie in its past in every other frame S	. Thus
“future” and “past” have invariant meanings. However, “simultaneity” is an ambiguous
concept, because all events that lie outside the past and future light cones of event 1
(that is, all events connected by spacelike intervals with event 1) can appear to occur
simultaneously with event 1 in some particular frame of reference.

The path of a particle in spacetime is called its world line (Fig. 1.26). The world line
of a particle must lie within its light cones.
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Figure 1.26 The world line of a particle in spacetime.
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6. An airplane is flying at 300 m/s (672 mi/h). How much time

must elapse before a clock in the airplane and one on the

ground differ by 1.00 s?

7. How fast must a spacecraft travel relative to the earth for each

day on the spacecraft to correspond to 2 d on the earth?

8. The Apollo 11 spacecraft that landed on the moon in 1969

traveled there at a speed relative to the earth of 1.08 � 104 m/s.

To an observer on the earth, how much longer than his own day

was a day on the spacecraft?

9. A certain particle has a lifetime of 1.00 � 10�7 s when meas-

ured at rest. How far does it go before decaying if its speed is

0.99c when it is created?

1.3 Doppler Effect

10. A spacecraft receding from the earth at 0.97c transmits data at

the rate of 1.00 � 104 pulses/s. At what rate are they received?

11. A galaxy in the constellation Ursa Major is receding from the

earth at 15,000 km/s. If one of the characteristic wavelengths of

the light the galaxy emits is 550 nm, what is the corresponding

wavelength measured by astronomers on the earth?

12. The frequencies of the spectral lines in light from a distant

galaxy are found to be two-thirds as great as those of the same

lines in light from nearby stars. Find the recession speed of the

distant galaxy.

1.1 Special Relativity

1. If the speed of light were smaller than it is, would relativistic

phenomena be more or less conspicuous than they are now?

2. It is possible for the electron beam in a television picture tube

to move across the screen at a speed faster than the speed of

light. Why does this not contradict special relativity?

1.2 Time Dilation

3. An athlete has learned enough physics to know that if he meas-

ures from the earth a time interval on a moving spacecraft,

what he finds will be greater than what somebody on the

spacecraft would measure. He therefore proposes to set a world

record for the 100-m dash by having his time taken by an

observer on a moving spacecraft. Is this a good idea?

4. An observer on a spacecraft moving at 0.700c relative to the

earth finds that a car takes 40.0 min to make a trip. How long

does the trip take to the driver of the car?

5. Two observers, A on earth and B in a spacecraft whose speed

is 2.00 � 108 m/s, both set their watches to the same time

when the ship is abreast of the earth. (a) How much time

must elapse by A’s reckoning before the watches differ by

1.00 s? (b) To A, B’s watch seems to run slow. To B, does A’s

watch seem to run fast, run slow, or keep the same time as

his own watch?
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13. A spacecraft receding from the earth emits radio waves at a

constant frequency of 109 Hz. If the receiver on earth can

measure frequencies to the nearest hertz, at what spacecraft

speed can the difference between the relativistic and classical

doppler effects be detected? For the classical effect, assume the

earth is stationary.

14. A car moving at 150 km/h (93 mi/h) is approaching a station-

ary police car whose radar speed detector operates at a fre-

quency of 15 GHz. What frequency change is found by the

speed detector?

15. If the angle between the direction of motion of a light source of

frequency �0 and the direction from it to an observer is �, the

frequency � the observer finds is given by

� � �0

where � is the relative speed of the source. Show that this for-

mula includes Eqs. (1.5) to (1.7) as special cases.

16. (a) Show that when � �� c, the formulas for the doppler effect

both in light and in sound for an observer approaching a

source, and vice versa, all reduce to � � �0(1 � ��c), so that

���� � ��c. [Hint: For x �� 1, 1�(1 � x) � 1 � x.] (b) What

do the formulas for an observer receding from a source, and

vice versa, reduce to when � �� c?

1.4 Length Contraction

17. An astronaut whose height on the earth is exactly 6 ft is lying

parallel to the axis of a spacecraft moving at 0.90c relative to

the earth. What is his height as measured by an observer in the

same spacecraft? By an observer on the earth?

18. An astronaut is standing in a spacecraft parallel to its direction

of motion. An observer on the earth finds that the spacecraft

speed is 0.60c and the astronaut is 1.3 m tall. What is the as-

tronaut’s height as measured in the spacecraft?

19. How much time does a meter stick moving at 0.100c relative to

an observer take to pass the observer? The meter stick is paral-

lel to its direction of motion.

20. A meter stick moving with respect to an observer appears only

500 mm long to her. What is its relative speed? How long does

it take to pass her? The meter stick is parallel to its direction of

motion.

21. A spacecraft antenna is at an angle of 10° relative to the axis of

the spacecraft. If the spacecraft moves away from the earth at a

speed of 0.70c, what is the angle of the antenna as seen from

the earth?

1.5 Twin Paradox

22. Twin A makes a round trip at 0.6c to a star 12 light-years away,

while twin B stays on the earth. Each twin sends the other a

signal once a year by his own reckoning. (a) How many signals

does A send during the trip? How many does B send? (b) How

many signals does A receive? How many does B receive?

23. A woman leaves the earth in a spacecraft that makes a round

trip to the nearest star, 4 light-years distant, at a speed of 0.9c.

�1 � �2	�c2	
��
1 � (��c) cos �

How much younger is she upon her return than her twin sister

who remained behind?

1.7 Relativistic Momentum

24. (a) An electron’s speed is doubled from 0.2c to 0.4c. By what

ratio does its momentum increase? (b) What happens to the

momentum ratio when the electron’s speed is doubled again

from 0.4c to 0.8c?

25. All definitions are arbitrary, but some are more useful than oth-

ers. What is the objection to defining linear momentum as p �

mv instead of the more complicated p � �mv?

26. Verify that

� 1 �

1.8 Mass and Energy

27. Dynamite liberates about 5.4 � 106 J/kg when it explodes.

What fraction of its total energy content is this?

28. A certain quantity of ice at 0°C melts into water at 0°C and in

so doing gains 1.00 kg of mass. What was its initial mass?

29. At what speed does the kinetic energy of a particle equal its rest

energy?

30. How many joules of energy per kilogram of rest mass are

needed to bring a spacecraft from rest to a speed of 0.90c?

31. An electron has a kinetic energy of 0.100 MeV. Find its speed

according to classical and relativistic mechanics.

32. Verify that, for E 		 E0,

� 1 � � �
2

33. A particle has a kinetic energy 20 times its rest energy. Find the

speed of the particle in terms of c.

34. (a) The speed of a proton is increased from 0.20c to 0.40c. By

what factor does its kinetic energy increase? (b) The proton

speed is again doubled, this time to 0.80c. By what factor does

its kinetic energy increase now?

35. How much work (in MeV) must be done to increase the speed

of an electron from 1.2 � 108 m/s to 2.4 � 108 m/s?

36. (a) Derive a formula for the minimum kinetic energy needed by

a particle of rest mass m to emit Cerenkov radiation in a

medium of index of refraction n. [Hint: Start from Eqs. (1.21)

and (1.23).] (b) Use this formula to find KEmin for an electron

in a medium of n � 1.5.

37. Prove that �
1

2
��m�2, does not equal the kinetic energy of a particle

moving at relativistic speeds.

38. A moving electron collides with a stationary electron and an

electron-positron pair comes into being as a result (a positron is

a positively charged electron). When all four particles have the

same velocity after the collision, the kinetic energy required for

this process is a minimum. Use a relativistic calculation to show

that KEmin � 6mc2, where m is the rest mass of the electron.

E0
�
E

1
�
2

�
�
c

p2

�
m2c2

1
��

�1 � �2	�c2	
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M/2 M/2

Initial center of mass

Burst of radiation is emitted

c

L

c

S
New center of mass

Radiation is
absorbed and
box stops

v

Figure 1.27 The box has moved the distance S to the left when
it stops.

39. An alternative derivation of the mass-energy formula E0 � mc2,

also given by Einstein, is based on the principle that the

location of the center of mass (CM) of an isolated system

cannot be changed by any process that occurs inside the

system. Figure 1.27 shows a rigid box of length L that rests

on a frictionless surface; the mass M of the box is equally

divided between its two ends. A burst of electromagnetic

radiation of energy E0 is emitted by one end of the box.

According to classical physics, the radiation has the momen-

tum p � E0�c, and when it is emitted, the box recoils with the

speed �  E0�Mc so that the total momentum of the system

remains zero. After a time t  L�c the radiation reaches the

other end of the box and is absorbed there, which brings the

box to a stop after having moved the distance S. If the CM of

the box is to remain in its original place, the radiation must

have transferred mass from one end to the other. Show that

this amount of mass is m � E0�c2.

1.9 Energy and Momentum

40. Find the SI equivalents of the mass unit MeV/c2 and the

momentum unit MeV/c.

41. In its own frame of reference, a proton takes 5 min to cross the

Milky Way galaxy, which is about 105 light-years in diameter.

(a) What is the approximate energy of the proton in electronvolts?

(b) About how long would the proton take to cross the galaxy as

measured by an observer in the galaxy’s reference frame?

42. What is the energy of a photon whose momentum is the same

as that of a proton whose kinetic energy is 10.0 MeV?

43. Find the momentum (in MeV/c) of an electron whose speed is

0.600c.

44. Find the total energy and kinetic energy (in GeV) and the

momentum (in GeV/c) of a proton whose speed is 0.900c. The

mass of the proton is 0.938 GeV/c2.

45. Find the momentum of an electron whose kinetic energy equals

its rest energy of 511 keV.

46. Verify that ��c � pc�E.

47. Find the speed and momentum (in GeV/c) of a proton whose

total energy is 3.500 GeV.

48. Find the total energy of a neutron (m � 0.940 GeV/c2) whose

momentum is 1.200 GeV/c.

49. A particle has a kinetic energy of 62 MeV and a momentum of

335 MeV/c. Find its mass (in MeV/c2) and speed (as a fraction

of c).

50. (a) Find the mass (in GeV/c2) of a particle whose total energy

is 4.00 GeV and whose momentum is 1.45 GeV/c. (b) Find the

total energy of this particle in a reference frame in which its

momentum is 2.00 GeV/c.

Appendix I: The Lorentz Transformation

51. An observer detects two explosions, one that occurs near her at

a certain time and another that occurs 2.00 ms later 100 km

away. Another observer finds that the two explosions occur at

the same place. What time interval separates the explosions to

the second observer?

52. An observer detects two explosions that occur at the same time,

one near her and the other 100 km away. Another observer

finds that the two explosions occur 160 km apart. What time

interval separates the explosions to the second observer?

53. A spacecraft moving in the �x direction receives a light sig-

nal from a source in the xy plane. In the reference frame of

the fixed stars, the speed of the spacecraft is � and the signal

arrives at an angle 
 to the axis of the spacecraft. (a) With

the help of the Lorentz transformation find the angle 
	 at

which the signal arrives in the reference frame of the space-

craft. (b) What would you conclude from this result about

the view of the stars from a porthole on the side of the

spacecraft?

54. A body moving at 0.500c with respect to an observer disinte-

grates into two fragments that move in opposite directions rela-

tive to their center of mass along the same line of motion as the

original body. One fragment has a velocity of 0.600c in the

backward direction relative to the center of mass and the other

has a velocity of 0.500c in the forward direction. What veloci-

ties will the observer find?

55. A man on the moon sees two spacecraft, A and B, coming to-

ward him from opposite directions at the respective speeds of

0.800c and 0.900c. (a) What does a man on A measure for the

speed with which he is approaching the moon? For the speed

with which he is approaching B? (b) What does a man on

B measure for the speed with which he is approaching the

moon? For the speed with which he is approaching A?

56. An electron whose speed relative to an observer in a laboratory

is 0.800c is also being studied by an observer moving in the

same direction as the electron at a speed of 0.500c relative to

the laboratory. What is the kinetic energy (in MeV) of the elec-

tron to each observer?



Class: B. Tech (Unit IV) 

I have taken all course materials for Unit IV from Book Concept of Modern Physics by Arthur 

Besier, Shobhit Mahajan & S. Rai Choudhury (McGraw Hill Education). 

Students can download this book form given web address;  

Web Address :  https://b-ok.cc/book/2700591/864ac0 

Some topics (mainly LASER) of unit IV (Laser and Fiber Optics) have been taken from 

Chapter4 from above said book ( https://b-ok.cc/book/2700591/864ac0 ). I am sending 

pdf file of Chapter 4 which have LASER notes. 

  

 

UNIT-IV: LASER & FIBER OPTICS                                                            

Introduction; Absorption and Emission, Einstein’s coefficients & equations; Metastable states, 

Population inversion, Pumping (three and four level laser schemes), Basic parts of a Laser, 

Characteristics of Laser Radiations; Classification of Lasers, Ruby Laser, He-Ne Laser, GaAs 

Laser; Applications of lasers in holography 

Basics of optical fiber, Total Internal Reflection, Acceptance angle, Numerical Aperture; 

Modes of Propagation, Single Mode Step Index Optical Fiber, Multimode Step Index Optical 

Fiber, Graded Index Fiber, Losses, Dispersion in Optical Fiber, Intermodal and intramodal 

dispersion, Applications of optical fiber; Problems. 

 

https://b-ok.cc/book/2700591/864ac0
https://b-ok.cc/book/2700591/864ac0


142 Chapter Four

where m is the electron mass. From Eq. (4.23) the energy levels of a positronium “atom” are

E�n � � � �

This means that the Rydberg constant—the constant term in Eq. (4.18)—for positronium is half

as large as it is for ordinary hydrogen. As a result the wavelengths in the positronium spectral

lines are all twice those of the corresponding lines in the hydrogen spectrum.

Example 4.7

A muon is an unstable elementary particle whose mass is 207me and whose charge is either �e

or �e. A negative muon (��) can be captured by a nucleus to form a muonic atom. (a) A proton

captures a ��. Find the radius of the first Bohr orbit of this atom. (b) Find the ionization energy

of the atom.

Solution

(a) Here m � 207me and M � 1836me, so the reduced mass is

m� � � � 186me

According to Eq. (4.13) the orbit radius corresponding to n � 1 is

r1 � 

where r1 � a0 � 5.29 � 10�11 m. Hence the radius r� that corresponds to the reduced mass

m� is

r�1 � � � r1 � � � a0 � 2.85 � 10�13 m

The muon is 186 times closer to the proton than an electron would be, so a muonic hydrogen

atom is much smaller than an ordinary hydrogen atom.

(b) From Eq. (4.23) we have, with n � 1 and E1 � �13.6 eV,

E�1 � � � E1 � 186E1 � �2.53 � 103 eV � �2.53 keV

The ionization energy is therefore 2.53 keV, 186 times that for an ordinary hydrogen atom.

4.8 ATOMIC EXCITATION

How atoms absorb and emit energy

There are two main ways in which an atom can be excited to an energy above its
ground state and thereby become able to radiate. One of these ways is by a collision
with another particle in which part of their joint kinetic energy is absorbed by the
atom. Such an excited atom will return to its ground state in an average of 10�8 s by
emitting one or more photons (Fig. 4.18).

To produce a luminous discharge in a rarefied gas, an electric field is established
that accelerates electrons and atomic ions until their kinetic energies are sufficient to
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�
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Figure 4.18 Excitation by colli-
sion. Some of the available energy
is absorbed by one of the atoms,
which goes into an excited energy
state. The atom then emits a pho-
ton in returning to its ground
(normal) state.

n = 1

n = 2

Photon
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excite atoms they collide with. Because energy transfer is a maximum when the colliding
particles have the same mass (see Fig. 12.22), the electrons in such a discharge are
more effective than the ions in providing energy to atomic electrons. Neon signs and
mercury-vapor lamps are familiar examples of how a strong electric field applied
between electrodes in a gas-filled tube leads to the emission of the characteristic spec-
tral radiation of that gas, which happens to be reddish light in the case of neon and
bluish light in the case of mercury vapor.

Another excitation mechanism is involved when an atom absorbs a photon of light
whose energy is just the right amount to raise the atom to a higher energy level. For
example, a photon of wavelength 121.7 nm is emitted when a hydrogen atom in the
n � 2 state drops to the n � 1 state. Absorbing a photon of wavelength 121.7 nm by
a hydrogen atom initially in the n � 1 state will therefore bring it up to the n � 2
state (Fig. 4.19). This process explains the origin of absorption spectra.

Auroras are caused by streams of fast protons and electrons from the sun that excite atoms in
the upper atmosphere. The green hues of an auroral display come from oxygen, and the reds
originate in both oxygen and nitrogen. This aurora occurred in Alaska.

Figure 4.19 How emission and absorption spectral lines originate.

Origin of emission spectra

Origin of absorption spectra

Photon of
wavelength λ

Photon of
wavelength λ

Spectrum

Spectrum+

+



144 Chapter Four

When white light, which contains all wavelengths, is passed through hydrogen gas,
photons of those wavelengths that correspond to transitions between energy levels are
absorbed. The resulting excited hydrogen atoms reradiate their excitation energy almost
at once, but these photons come off in random directions with only a few in the same
direction as the original beam of white light (Fig. 4.20). The dark lines in an absorp-
tion spectrum are therefore never completely black but only appear so by contrast with
the bright background. We expect the lines in the absorption spectrum of any element
to coincide with those in its emission spectrum that represent transitions to the ground
state, which agrees with observation (see Fig. 4.9).

Franck-Hertz Experiment

Atomic spectra are not the only way to investigate energy levels inside atoms. A series
of experiments based on excitation by collision was performed by James Franck and
Gustav Hertz (a nephew of Heinrich Hertz) starting in 1914. These experiments demon-
strated that atomic energy levels indeed exist and, furthermore, that the ones found in
this way are the same as those suggested by line spectra.

Franck and Hertz bombarded the vapors of various elements with electrons of known
energy, using an apparatus like that shown in Fig. 4.21. A small potential difference
V0 between the grid and collecting plate prevents electrons having energies less than
a certain minimum from contributing to the current I through the ammeter. As the
accelerating potential V is increased, more and more electrons arrive at the plate and
I rises (Fig. 4.22).

Figure 4.20 The dark lines in an absorption spectrum are never totally dark.
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Figure 4.21 Apparatus for the Franck-Hertz experiment.
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If KE is conserved when an electron collides with one of the atoms in the vapor,
the electron merely bounces off in a new direction. Because an atom is much heavier
than an electron, the electron loses almost no KE in the process. After a certain criti-
cal energy is reached, however, the plate current drops abruptly. This suggests that an
electron colliding with one of the atoms gives up some or all of its KE to excite the
atom to an energy level above its ground state. Such a collision is called inelastic, in
contrast to an elastic collision in which KE is conserved. The critical electron energy
equals the energy needed to raise the atom to its lowest excited state.

Then, as the accelerating potential V is raised further, the plate current again
increases, since the electrons now have enough energy left to reach the plate after under-
going an inelastic collision on the way. Eventually another sharp drop in plate current
occurs, which arises from the excitation of the same energy level in other atoms by the
electrons. As Fig. 4.22 shows, a series of critical potentials for a given atomic vapor is
obtained. Thus the higher potentials result from two or more inelastic collisions and
are multiples of the lowest one.

To check that the critical potentials were due to atomic energy levels, Franck and
Hertz observed the emission spectra of vapors during electron bombardment. In the
case of mercury vapor, for example, they found that a minimum electron energy of
4.9 eV was required to excite the 253.6-nm spectral line of mercury—and a photon
of 253.6-nm light has an energy of just 4.9 eV. The Franck-Hertz experiments were
performed shortly after Bohr announced his theory of the hydrogen atom, and they
independently confirmed his basic ideas.

4.9 THE LASER

How to produce light waves all in step

The laser is a device that produces a light beam with some remarkable properties:

1 The light is very nearly monochromatic.

2 The light is coherent, with the waves all exactly in phase with one another (Fig.4.23).

Figure 4.22 Results of the Franck-Hertz experiment, showing critical potentials in mercury vapor.
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Figure 4.23 A laser produces a
beam of light  whose waves all
have the same frequency  (mono-
chromatic) and are in phase with
one another  (coherent). The
beam is also well collimated and
so spreads out very little, even
over long distances.
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3 A laser beam diverges hardly at all. Such a beam sent from the earth to a mirror left
on the moon by the Apollo 11 expedition remained narrow enough to be detected on
its return to the earth, a total distance of over three-quarters of a million kilometers.
A light beam produced by any other means would have spread out too much for this
to be done.
4 The beam is extremly intense, more intense by far than the light from any other
source. To achieve an energy density equal to that in some laser beams, a hot object
would have to be at a temperature of 1030 K.

The last two of these properties follow from the second of them. 
The term laser stands for light amplification by stimulated emission of radiation.

The key to the laser is the presence in many atoms of one or more excited energy lev-
els whose lifetimes may be 10�3 s or more instead of the usual 10�8 s. Such relatively
long-lived states are called metastable (temporarily stable); see Fig. 4.24.

Three kinds of transition involving electromagnetic radiation are possible between
two energy levels, E0 and E1, in an atom (Fig. 4.25). If the atom is initially in the
lower state E0, it can be raised to E1 by absorbing a photon of energy E1 � E0 �

h�. This process is called stimulated absorption. If the atom is initially in the upper
state E1, it can drop to E0 by emitting a photon of energy h�. This is spontaneous
emission.

Einstein, in 1917, was the first to point out a third possibility, stimulated emis-
sion, in which an incident photon of energy h� causes a transition from E1 to E0.
In stimulated emission, the radiated light waves are exactly in phase with the
incident ones, so the result is an enhanced beam of coherent light. Einstein
showed that stimulated emission has the same probability as stimulated absorp-
tion (see Sec. 9.7). That is, a photon of energy h� incident on an atom in the upper

Figure 4.24 An atom can exist in a metastable energy level for a longer time before radiating than it
can in an ordinary energy level.
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Figure 4.25 Transitions between two energy levels in an atom can occur by stimulated absorption,
spontaneous emission, and stimulated emission.
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state E1 has the same likelihood of causing the emission of another photon of
energy h� as its likelihood of being absorbed if it is incident on an atom in the lower
state E0.

Stimulated emission involves no novel concepts. An analogy is a harmonic oscilla-
tor, for instance a pendulum, which has a sinusoidal force applied to it whose period
is the same as its natural period of vibration. If the applied force is exactly in phase
with the pendulum swings, the amplitude of the swings increases. This corresponds
to stimulated absorption. However, if the applied force is 180° out of phase with the
pendulum swings, the amplitude of the swings decreases. This corresponds to stimu-
lated emission.

A three-level laser, the simplest kind, uses an assembly of atoms (or molecules)
that have a metastable state h� in energy above the ground state and a still higher ex-
cited state that decays to the metastable state (Fig. 4.26). What we want is more atoms
in the metastable state than in the ground state. If we can arrange this and then shine
light of frequency � on the assembly, there will be more stimulated emissions from
atoms in the metastable state than stimulated absorptions by atoms in the ground state.
The result will be an amplification of the original light. This is the concept that un-
derlies the operation of the laser.

The term population inversion describes an assembly of atoms in which the ma-
jority are in energy levels above the ground state; normally the ground state is occu-
pied to the greatest extent.

A number of ways exist to produce a population inversion. One of them, called
optical pumping, is illustrated in Fig. 4.27. Here an external light source is used some
of whose photons have the right frequency to raise ground-state atoms to the excited
state that decays spontaneously to the desired metastable state.

Why are three levels needed? Suppose there are only two levels, a metastable state
h� above the ground state. The more photons of frequency � we pump into the assembly
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Figure 4.26 The principle of the laser.
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Figure 4.27 The ruby laser. In order for stimulated emission to exceed stimulated absorption, more than half the Cr3+ ions in the ruby
rod must be in the metastable state. This laser produces a pulse of red light after each flash of the lamp.
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of atoms, the more upward transitions there will be from the ground state to the
metastable state. However, at the same time the pumping will stimulate downward
transitions from the metastable state to the ground state. When half the atoms are in
each state, the rate of stimulated emissions will equal the rate of stimulated absorp-
tions, so the assembly cannot ever have more than half its atoms in the metastable
state. In this situation laser amplification cannot occur. A population inversion is only
possible when the stimulated absorptions are to a higher energy level than the
metastable one from which the stimulated emission takes place, which prevents the
pumping from depopulating the metastable state.

In a three-level laser, more than half the atoms must be in the metastable state for
stimulated induced emission to predominate. This is not the case for a four-level laser.
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As in Fig. 4.28, the laser transition from the metastable state ends at an unstable in-
termediate state rather than at the ground state. Because the intermediate state decays
rapidly to the ground state, very few atoms are in the intermediate state. Hence even
a modest amount of pumping is enough to populate the metastable state to a greater
extent than the intermediate state, as required for laser amplification.

Practical Lasers

The first successful laser, the ruby laser, is based on the three energy levels in the
chromium ion Cr3� shown in Fig. 4.27. A ruby is a crystal of aluminum oxide, Al2O3,

Figure 4.28 A four-level laser.
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in which some of the Al3+ ions are replaced by Cr3+ ions, which are responsible for
the red color. A Cr3+ ion has a metastable level whose lifetime is about 0.003 s. In the
ruby laser, a xenon flash lamp excites the Cr3+ ions to a level of higher energy from
which they fall to the metastable level by losing energy to other ions in the crystal.
Photons from the spontaneous decay of some Cr3+ ions are reflected back and forth
between the mirrored ends of the ruby rod, stimulating other excited Cr3+ ions to ra-
diate. After a few microseconds the result is a large pulse of monochromatic, coherent
red light from the partly transparent end of the rod.

The rod’s length is made precisely an integral number of half-wavelengths long, so
the radiation trapped in it forms an optical standing wave. Since the stimulated emis-
sions are induced by the standing wave, their waves are all in step with it.

The common helium-neon gas laser achieves a population inversion in a differ-
ent way. A mixture of about 10 parts of helium and 1 part of neon at a low pressure
(1 torr) is placed in a glass tube that has parallel mirrors, one of them partly trans-
parent, at both ends. The spacing of the mirrors is again (as in all lasers) equal to an
integral number of half-wavelengths of the laser light. An electric discharge is pro-
duced in the gas by means of electrodes outside the tube connected to a source of
high-frequency alternating current, and collisions with electrons from the discharge
excite He and Ne atoms to metastable states respectively 20.61 and 20.66 eV above
their ground states (Fig. 4.29). Some of the excited He atoms transfer their energy to
ground-state Ne atoms in collisions, with the 0.05 eV of additional energy being pro-
vided by the kinetic energy of the atoms. The purpose of the He atoms is thus to help
achieve a population inversion in the Ne atoms.

The laser transition in Ne is from the metastable state at 20.66 eV to an ex-
cited state at 18.70 eV, with the emission of a 632.8-nm photon. Then another
photon is spontaneously emitted in a transition to a lower metastable state; this
transition yields only incoherent light. The remaining excitation energy is lost in
collisions with the tube walls. Because the electron impacts that excite the He and
Ne atoms occur all the time, unlike the pulsed excitation from the xenon flash lamp
in a ruby laser, a He-Ne laser operates continuously. This is the laser whose narrow
red beam is used in supermarkets to read bar codes. In a He-Ne laser, only a tiny

Figure 4.29 The helium-neon laser. In a four-level  laser such as this, continuous operation is possi-
ble. Helium-neon lasers are commonly used to read bar codes.
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