FOLLOWING IS THE SYLLABUS TO BE COVERED IN THE COURSE NAME:

(1) COMMUNICATION SYSTEMS -I THEORY
(2) COMMUNICATION SYSTEMS-I LAB (ONLY SIMULATION)

BOOKS RECOMMENDED (AVAILABLE ONLINE)

(1) Network Analysis by Van Valkenburg for *Fourier Series and Analysis*

(2) Principles of Communication Systems by Taub and Schilling for *entire syllabus*

(3) Electronic Communication Systems by George Kennedy for *entire syllabus*

(4) Electronic Communication Systems by Roddy Coollen for *entire syllabus*

Teacher Incharge

Dr. Gausia Qazi
Dept of ECE
NIT Srinagar
(09419015436)
(gausia.qazi@nitsri.net)
Department of Computer Science & Engineering
National Institute of Technology, Srinagar.

Subject: Communication Systems
Semester: 4th
Department: Electronics & Communication Engineering
Course No.: ECE 408
Credits: 4
LTP: 3 1 0

Course Details:

Special analysis of Signals:
Fourier series of repetitive signals, Fourier transform of non-repetitive signals, Amplitude spectrum of special signals viz., pulse train and pulse waveform.

Modulation:

Demodulation:
AM and FM signals, Radio Receivers – AM & FM (Block diagram)

Noise Analysis:
Performance of AM & FM Systems, in presence of noise Threshold in AM & FM, Demodulation, pre emphasis and De emphasis, in FM Systems.

Digital Communication:
Sampling, Quantization, quantization noise, Coding, Pulse code Modulation; differential PCM, ADPCM, Relative advantages and dis-advantages. Delta modulation, PWM & PPM.

Digital Modulation Techniques:
ESK, FSK, DPSK Schemes.
Department of Computer Science & Engineering
National Institute of Technology Srinagar.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Communication Systems Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester</td>
<td>4<sup>th</sup></td>
</tr>
<tr>
<td>Department</td>
<td>Electronics & Communication</td>
</tr>
<tr>
<td></td>
<td>Engineering</td>
</tr>
<tr>
<td>Course No.</td>
<td>ECE 409 P</td>
</tr>
<tr>
<td>Credits</td>
<td>1</td>
</tr>
<tr>
<td>L T P</td>
<td>0 0 2</td>
</tr>
</tbody>
</table>

Lab Details:

i) Generation and detection of amplitude modulated signals.

ii) Generation and detection of frequency modulated signals.

iii) To measure sensitivity, selectivity, and fidelity of a radio receiver.

iv) To generate PAM and PDM signals using IC 555.

v) To test a pulse code modulator.

vi) To measure the noise figure of the following systems:-

 A.M. System.

 F.M. System.