
UNIT-II

Page 1

 ADDRESSING MODES

UNIT-2

MACHINE INSTRUCTION SET

Figure 2.1 Addressing Modes

UNIT-II

Page 2

The address field or fields in a typical instruction format are relatively small. We should be able to

reference a large range of locations in main memory. For this, a variety of addressing techniques has been

employed. The most common addressing techniques are:

• Immediate

• Direct

• Indirect

• Register

• Register indirect

• Displacement

• Stack

Table 2.1Basic Addressing Modes

Table 2.1 indicates the address calculation performed for each addressing mode. Different opcodes will

use different addressing modes. Also, one or more bits in the instruction format can be used as a mode

field. The value of the mode field determines which addressing mode is to be used.

Immediate Addressing

The simplest form of addressing is immediate addressing, in which the operand value is present in the

instruction

Operand = A

This mode can be used to define and use constants or set initial values of variables

The advantage of immediate addressing is that no memory reference other than the instruction

fetch is required to obtain the operand, thus saving one memory or cache cycle in the instruction cycle.

The disadvantage is that the size of the number is restricted to the size of the address field, which, in most

instruction sets, is small compared with the word length.

Direct Addressing

A very simple form of addressing is direct addressing, in which the address field contains the effective

address of the operand:

EA = A

The advantage is it requires only one memory reference and no special calculation. The

disadvantage is that it provides only a limited address space.

UNIT-II

Page 3

Indirect Addressing

With direct addressing, the length of the address field is usually less than the word length, thus limiting

the address range. One solution is to have the address field refer to the address of a word in memory,

which in turn contains a full-length address of the operand. This is known as indirect addressing:

EA = (A)

As defined earlier, the parentheses are to be interpreted as meaning contents of.
N

The obvious advantage of this approach is that for a word length of N, an address space of 2 is
now available. The disadvantage is that instruction execution requires two memory references to fetch the

operand: one to get its address and a second to get its value.

A rarely used variant of indirect addressing is multilevel or cascaded indirect addressing:

EA = (Á (A) Á)

Register Addressing

Register addressing is similar to direct addressing. The only difference is that the address field refers to a

register rather than a main memory address:

EA = R

To clarify, if the contents of a register address field in an instruction is 5, then register R5 is the

intended address, and the operand value is contained in R5.

The advantages of register addressing are that (1) only a small address field is needed in the

instruction, and (2) no time-consuming memory references are required because the memory access time

for a register internal to the processor is much less than that for a main memory address. The

disadvantage of register addressing is that the address space is very limited.

Register Indirect Addressing

Just as register addressing is analogous to direct addressing, register indirect addressing is analogous to

indirect addressing. In both cases, the only difference is whether the address field refers to a memory

location or a register.Thus,for register indirect address,

EA = (R)

The advantages and limitations of register indirect addressing are basically the same as for indirect

addressing. In both cases, the address space limitation (limited range of addresses) of the address field is

overcome by having that field refer to a word-length location containing an address. In addition, register

indirect addressing uses one less memory reference than indirect addressing.

Displacement Addressing

A very powerful mode of addressing combines the capabilities of direct addressing and register indirect

addressing. We will refer to this as displacement addressing:

EA = A + (R)

Displacement addressing requires that the instruction have two address fields, at least one of which is

explicit. The value contained in one address field (value = A) is used directly. The other address field, or

an implicit reference based on opcode, refers to a register whose contents are added to A to produce the

effective address.

We will describe three of the most common uses of displacement addressing:

• Relative addressing

UNIT-II

Page 4

• Base-register addressing

• Indexing

RELATIVE ADDRESSING For relative addressing, also called PC-relative addressing, the implicitly

referenced register is the program counter (PC). That is, the next instruction address is added to the

address field to produce the EA. Thus, the effective address is a displacement relative to the address of

the instruction.

BASE-REGISTER ADDRESSING For base-register addressing, the interpretation is the following: The

referenced register contains a main memory address, and the address field contains a displacement

(usually an unsigned integer representation) from that address. The register reference may be explicit or

implicit.

INDEXING For indexing, the interpretation is typically the following: The address field references a

main memory address, and the referenced register contains a positive displacement from that address.

This usage is just the opposite of the interpretation for base-register

An important use of indexing is to provide an efficient mechanism for performing iterative

operations. Consider, for example, a list of numbers stored starting at location A. Suppose that we would

like to add 1 to each element on the list. We need to fetch each value, add 1 to it, and store it back. The

sequence of effective addresses that we need is A,A + 1, A + 2, . . ., up to the last location on the list.

With indexing, this is easily done. The value A is stored in the instruction’s address field, and the chosen

register, called an index register, is initialized to 0. After each operation, the index register is incremented

by 1.

Because index registers are commonly used for such iterative tasks, it is typical that there is a need

to increment or decrement the index register after each reference to it. Because this is such a common

operation, some systems will automatically do this as part of the same instruction cycle.This is known as

autoindexing

.. If general-purpose registers are used, the autoindex operation may need to be signaled by a bit in

the instruction.Autoindexing using increment can be depicted as follows.

EA = A + (R)

(R) ; (R) + 1

In some machines, both indirect addressing and indexing are provided, and it is possible to employ

both in the same instruction. There are two possibilities: the indexing is performed either before or after

the indirection.

If indexing is performed after the indirection, it is termed postindexing:

EA = (A) + (R)

First, the contents of the address field are used to access a memory location containing a direct address.

This address is then indexed by the register value.

With preindexing, the indexing is performed before the indirection:

EA = (A + (R))

An address is calculated as with simple indexing. In this case, however, the calculated address contains

not the operand, but the address of the operand.

Stack Addressing

The final addressing mode that we consider is stack addressing. It is sometimes referred to as a

pushdown list or last-in-first-out queue. The stack is a reserved block of locations.

Items are appended to the top of the stack so that, at any given time, the block is partially filled.

UNIT-II

Page 5

Associated with the stack is a pointer whose value is the address of the top of the stack. Alternatively, the

top two elements of the stack may be in processor registers, in which case the stack pointer references the

third element of the stack.

The stack pointer is maintained in a register. Thus, references to stack locations in memory are in

fact register indirect addresses.

The stack mode of addressing is a form of implied addressing. The machine instructions need not

include a memory reference but implicitly operate on the top of the stack

 X86 ADDRESSING MODES

The x86 address translation mechanism produces an address, called a virtual or effective address, that

is an offset into a segment. The sum of the starting address of the segment and the effective address

produces a linear address. If paging is being used, this linear address must pass through a page-translation

mechanism to produce a physical address.

The x86 is equipped with a variety of addressing modes intended to allow the efficient execution of

high-level languages. Figure 2.2 indicates the logic involved. The segment register determines the

segment that is the subject of the reference. There are six segment registers. Each segment register holds

an index into the segment descriptor table which holds the starting address of the corresponding

segments. With each segment register is a segment descriptor register which records the access rights for

the segment as well as the starting address and limit (length) of the segment. In addition, there are two

registers that may be used in constructing an address: the base register and the index register.

Table 2.2 lists the x86 addressing modes.

 Immediate mode, the operand is included in the instruction. The operand can be a byte, word, or
doubleword of data.

 Register operand mode, the operand is located in a register. For general instructions, such as data

transfer, arithmetic, and logical instructions, the operand can be one of the 32-bit general registers (EAX,

EBX, ECX, EDX, ESI, EDI, ESP, EBP), one of the 16-bit general registers (AX, BX, CX, DX, SI, DI,

SP, BP), or one of the 8bit general registers (AH, BH, CH, DH, AL, BL, CL, DL). There are also some

instructions that reference the segment selector registers (CS, DS, ES, SS, FS, GS).

 Displacement mode, the operand’s offset (the effective address of Figure 11.2) is contained as

part of the instruction as an 8-, 16-, or 32-bit displacement. The displacement addressing mode is found

on few machines because, as mentioned earlier, it leads to long instructions. In the case of the x86, the

displacement value can be as long as 32 bits, making for a 6-byte instruction. Displacement addressing

can be useful for referencing global variables.

The remaining addressing modes are indirect, in the sense that the address portion of the instruction tells

the processor where to look to find the address.

 Base mode specifies that one of the 8-, 16-, or 32-bit registers contains the effective address. This
is equivalent to what we have referred to as register indirect addressing.

 Base with displacement mode, the instruction includes a displacement to be added to a base

register, which may be any of the general-purpose registers.

Examples of uses of this mode are as follows:

 Used by a compiler to point to the start of a local variable area

 Used to index into an array when the element size is not 1, 2, 4, or 8 bytes and which therefore

cannot be indexed using an index register.

 Used to access a field of a record.

UNIT-II

Page 6

Figure 2.2 x86 Addressing mode caluclation

 Scaled index with displacement mode, the instruction includes a displacement to be added to a

register, in this case called an index register. The index register may be any of the general-purpose

registers except the one called ESP, which is generally used for stack processing. In calculating the

effective address, the contents of the index register are multiplied by a scaling factor of 1, 2, 4, or 8, and

then added to a displacement.

A scaling factor of 2 can be used for an array of 16-bit integers. A scaling factor of 4 can be used

for 32-bit integers or floating-point numbers. Finally, a scaling factor of 8 can be used for an array of

double-precision floating-point numbers.

 Base with index and displacement mode sums the contents of the base register, the index

register, and a displacement to form the effective address. Again, the base register can be any general-

purpose register and the index register can be any general-purpose register except ESP.

This mode can also be used to support a two-dimensional array; in this case, the displacement points

to the beginning of the array and each register handles one dimension of the array.

 Based scaled index with displacement mode sums the contents of the index register multiplied

by a scaling factor, the contents of the base register, and the displacement.This is useful if an array is

stored in a stack frame. This mode also provides efficient indexing of a two-dimensional array when the

array elements are 2, 4, or 8 bytes in length.

 Relative addressing can be used in transfer-of-control instructions. A displacement is added to

the value of the program counter, which points to the next instruction.

UNIT-II

Page 7

Table 2.2 x86 Addressing modes

 ARM Addressing Modes

In the ARM architecture the addressing modes are most conveniently classified with respect to the type of
1

instruction.

1. LOAD/STORE ADDRESSING Load and store instructions are the only instructions that

reference memory. This is always done indirectly through a base register plus offset. There are

three alternatives with respect to indexing (Figure 2.3):

• Offset: For this addressing method, indexing is not used. An offset value is added to or subtracted

from the value in the base register to form the memory address.

As an example Figure 2.3a illustrates this method with the assembly language instruction

STRB r0,[r1,#12].

This is the store byte instruction. In this case the base address is in register r1 and the displacement is

an immediate value of decimal 12. The resulting address (base plus offset) is the location where the least

significant byte from r0 is to be stored.

• Preindex: The memory address is formed in the same way as for offset addressing.The memory

address is also written back to the base register.In other words, the base register value is incremented or

decremented by the offset value. Figure 2.3b illustrates this method with the assembly language instruc-

tion

STRBr0,[r1,#12]!.

The exclamation point signifies preindexing.

• Postindex: The memory address is the base register value.An offset is added to or subtracted from

the base register value and the result is written back to the base register. Figure 2.3c illustrates this

method with the assembly language instruction

STRB r0, [r1], #12.

The value in the offset register is scaled by one of the shift operators: Logical Shift Left, Logical

UNIT-II

Page 8

Shift Right, Arithmetic Shift Right, Rotate Right, or Rotate Right Extended (which includes the carry bit

in the rotation). The amount of the shift is specified as an immediate value in the instruction.

1. DATA PROCESSING INSTRUCTION ADDRESSING Data processing instructions use either

register addressing of a mixture of register and immediate addressing. For register addressing, the value in

one of the register operands may be scaled using one of the five shift operators defined in the preceding

paragraph.

2. BRANCH INSTRUCTIONS The only form of addressing for branch instructions is immediate

addressing. The branch instruction contains a 24-bit value. For address calculation, this value is shifted

left 2 bits, so that the address is on a word boundary. Thus the effective address range is ;32 MB from the

program counter.

3. LOAD/STORE MULTIPLE ADDRESSING Load multiple instructions load a subset of the

general-purpose registers from memory. Store multiple instructions store a subset of the general-purpose

registers to memory.

Figure 2.3 ARM Indexing Methods

The list of registers for the load or store is specified in a 16-bit field in the instruction with each bit

corresponding to one of the 16 registers. Load and Store Multiple addressing modes produce a sequential

range of memory addresses. The lowest-numbered register is stored at the lowest memory address and the

highest-numbered register at the highest memory address. Four addressing modes are used

UNIT-II

Page 9

(Figure 2.4): increment after, increment before, decrement after, and decrement before. A base

register specifies a main memory address where register values are stored in or loaded from in ascending

(increment) or descending (decrement) word locations. Incrementing or decrementing starts either before

or after the first memory access.

Figure 2.4 ARM Load/Store Multiple addressing

 INSTRUCTION FORMATS

An instruction format defines the layout of the bits of an instruction. An instruction format must

include an opcode and, implicitly or explicitly, zero or more operands. Each explicit operand is

referenced using one of the addressing modes. Key design issues in X86 instruction formats are:

Instruction Length

The most basic design issue to be faced is the instruction format length which is affected by,

memory size, memory organization, bus structure, processor complexity, and processor speed.

Beyond this basic trade-off, there are other considerations.

 Either the instruction length should be equal to the memory-transfer length or one should be a
multiple of the other.

 Memory transfer rate has not kept up with increases in processor speed.

 Memory can become a bottleneck if the processor can execute instructions faster than it can fetch

them. One solution to this problem is to use cache memory and another is to use shorter

instructions.

 Instruction length should be a multiple of the character length, which is usually 8 bits, and of the

length of fixed-point numbers.

Allocation of Bits

An equally difficult issue is how to allocate the bits in that format. For a given instruction length,

more opcodes obviously mean more bits in the opcode field. For an instruction format of a given length,

this reduces the number of bits available for addressing. There is one interesting refinement to this trade-

off, and that is the use of variable-length opcodes.

In this approach, there is a minimum opcode length but, for some opcodes, additional operations

may be specified by using additional bits in the instruction. For a fixed-length instruction, this leaves

fewer bits for addressing. Thus, this feature is used for those instructions that require fewer operands

and/or less powerful addressing.

The following interrelated factors go into determining the use of the addressing bits.

• Number of addressing modes: Sometimes an addressing mode can be indicated implicitly. In

other cases, the addressing modes must be explicit, and one or more mode bits will be needed.

• Number of operands: Typical instructions on today’s machines provide for two operands. Each

UNIT-II

Page 10

operand address in the instruction might require its own mode indicator, or the use of a mode indicator

could be limited to just one of the address fields.

• Register versus memory: A machine must have registers so that data can be brought into the

processor for processing. With a single user-visible register (usually called the accumulator), one operand

address is implicit and consumes no instruction bits. However, single-register programming is awkward

and requires many instructions. Even with multiple registers, only a few bits are needed to specify the

register. The more that registers can be used for operand references, the fewer bits are needed

• Number of register sets: Most contemporary machines have one set of general-purpose registers,

with typically 32 or more registers in the set. These registers can be used to store data and can be used to

store addresses for displacement addressing

• Address range: For addresses that reference memory, the range of addresses that can be

referenced is related to the number of address bits. Because this imposes a severe limitation, direct

addressing is rarely used. With displacement addressing, the range is opened up to the length of the

address register

• Address granularity: For addresses that reference memory rather than registers, another factor is

the granularity of addressing. In a system with 16- or 32-bit words, an address can reference a word or a

byte at the designer’s choice. Byte addressing is convenient for character manipulation but requires, for a

fixed-size memory, more address bits. Thus, the designer is faced with a host of factors to consider and

balance.

 x86 Instruction Formats

The x86 is equipped with a variety of instruction formats. Figure 2.5 illustrates the general

instruction format. Instructions are made up of from zero to four optional instruction prefixes, a 1- or 2-

byte opcode, an optional address specifier (which consists of the ModR/m byte and the Scale Index byte)

an optional displacement, and an optional immediate field.

Figure 2.5 X86 Instruction Format

• Instruction prefixes: The instruction prefix, if present, consists of the LOCK prefix or one of the

repeat prefixes. The LOCK prefix is used to ensure exclusive use of shared memory in multiprocessor

environments. The repeat prefixes specify repeated operation of a string, which enables the x86 to process

strings much faster than with a regular software loop.

UNIT-II

Page 11

There are five different repeat prefixes: REP, REPE, REPZ, REPNE, and REPNZ. When the absolute

REP prefix is present, the operation specified in the instruction is executed repeatedly on successive

elements of the string; the number of repetitions is specified in register CX.

• Segment override: Explicitly specifies which segment register an instruction should use,

overriding the default segment-register selection generated by the x86 for that instruction.

• Operand size: An instruction has a default operand size of 16 or 32 bits, and the operand prefix

switches between 32-bit and 16-bit operands.

• Address size: The processor can address memory using either 16- or 32-bit addresses. The

address size determines the displacement size in instructions and the size of address offsets generated

during effective address calculation.

• Opcode: The opcode field is 1, 2, or 3 bytes in length. The opcode may also include bits that

specify if data is byte- or full-size (16 or 32 bits depending on context), direction of data operation (to or

from memory), and whether an immediate data field must be sign extended.

• ModR/m: This byte, and the next, provide addressing information. The ModR/m byte specifies

whether an operand is in a register or in memory; if it is in memory, then fields within the byte specify the

addressing mode to be used. The ModR/m byte consists of three fields:

The Mod field (2 bits) combines with the r/m field to form 32 possible values: 8 registers and 24

indexing modes;

the Reg/Opcode field (3 bits) specifies either a register number or three more bits of opcode

information; the r/m field (3 bits) can specify a register as the location of an operand, or it can form part

of the addressing-mode encoding in combination with the Mod field.

• SIB: Certain encoding of the ModR/m byte specifies the inclusion of the SIB byte to specify fully

the addressing mode.The SIB byte consists of three fields: The Scale field (2 bits) specifies the scale

factor for scaled indexing; the Index field (3 bits) specifies the index register; the Base field (3 bits)

specifies the base register.

• Displacement: When the addressing-mode specifier indicates that a displacement is used, an 8-,

16-, or 32-bit signed integer displacement field is added.

• Immediate: Provides the value of an 8-, 16-, or 32-bit operand

Several comparisons may be useful here.

In the x86 format, the addressing mode is provided as part of the opcode sequence rather than with
each operand. Because only one operand can have address-mode information, only one memory operand

can be referenced in an instruction. In contrast, the VAX carries the address-mode information with each

operand, allowing memory-to-memory operations. The x86 instructions are therefore more compact.

However, if a memory-to-memory operation is required, the VAX can accomplish this in a single

instruction.

The x86 format allows the use of not only 1-byte, but also 2-byte and 4-byte offsets for indexing.

Although the use of the larger index offsets results in longer instructions, this feature provides needed

flexibility.

 PROCESSOR ORGANISATION

To understand the organization of the processor, let us consider the requirements placed on the

processor, the things that it must do:

• Fetch instruction: The processor reads an instruction from memory (register, cache, main

memory).

• Interpret instruction: The instruction is decoded to determine what action is required.

• Fetch data: The execution of an instruction may require reading data from memory or an I/O

module.

• Process data: The execution of an instruction may require performing some arithmetic or logical

operation on data.

UNIT-II

Page 12

• Write data: The results of an execution may require writing data to memory or an I/O module.

To do these things, it should be clear that the processor needs to store some data temporarily. In

other words, the processor needs a small internal memory.

Figure 2.6 is a simplified view of a processor, indicating its connection to the rest of the system

via the system bus. The major components of the processor are an arithmetic and logic unit (ALU) and a

control unit (CU). The ALU does the actual computation or processing of data. The control unit controls

the movement of data and instructions into and out of the processor and controls the operation of the

ALU. In addition, the figure shows a minimal internal memory, consisting of a set of storage locations,

called registers.

Figure 2.6 The CPU With System Bus

Figure 2.7 is a slightly more detailed view of the processor. The data transfer and logic control

paths are indicated, including internal processor bus which is needed to transfer data between the various

registers and the ALU because the ALU in fact operates only on data in the internal processor memory.

2.7Internal Structure of the CPU

UNIT-II

Page 13

 REGISTER ORGANISATION

A computer system employs a memory hierarchy. At higher levels of the hierarchy, memory is

faster, smaller, and more expensive (per bit). Within the processor, there is a set of registers that function

as a level of memory above main memory and cache in the hierarchy. The registers in the processor

perform two roles:

• User-visible registers: Enable the machine- or assembly language programmer to minimize main

memory references by optimizing use of registers.

• Control and status registers: Used by the control unit to control the operation of the processor

and by privileged, operating system programs to control the execution of programs.

User-Visible Registers

A user-visible register is one that may be referenced by means of the machine language that the processor

executes. We can characterize these in the following categories:

• General purpose

• Data

• Address

• Condition codes

General-purpose registers can be assigned to a variety of functions by the programmer.

Sometimes their use within the instruction set is orthogonal to the operation. That is, any general-purpose

register can contain the operand for any opcode. This provides true general-purpose register use. There

may be dedicated registers for floating-point and stack operations.

In some cases, general-purpose registers can be used for addressing functions (e.g., register

indirect, displacement).

Data registers may be used only to hold data and cannot be employed in the calculation of an

operand address.

Address registers may themselves be somewhat general purpose, or they may be devoted to a

particular addressing mode. Examples include the following:

• Segment pointers: In a machine with segmented addressing, a segment register holds the address

of the base of the segment.

• Index registers: These are used for indexed addressing and may be auto indexed.

• Stack pointer: If there is user-visible stack addressing, then typically there is a dedicated register

that points to the top of the stack.

There are several design issues to be addressed here.

 An important issue is whether to use completely general-purpose registers or to specialize their

use.

 Another design issue is the number of registers, general purpose or data plus address, to be

provided. Again, this affects instruction set design because more registers require more operand
specifier bits.

 Finally, there is the issue of register length. Registers that must hold addresses obviously must be

at least long enough to hold the largest address. Data registers should be able to hold values of

most data types. Some machines allow two contiguous registers to be used as one for holding

double-length values.

Condition codes (also referred to as flags): Condition codes are bits set by the processor hardware

as the result of operations. For example, an arithmetic operation may produce a positive, negative, zero,

or overflow result. In addition to the result itself being stored in a register or memory, a condition code is

also set. The code may subsequently be tested as part of a conditional branch operation.

UNIT-II

Page 14

Table 2.3, lists key advantages and disadvantages of condition codes

Table 2.3 Condition code Advantages and Disadvantages

Control and Status Registers

There are a variety of processor registers that are employed to control the operation of the

processor. Most of these, on most machines, are not visible to the user. Some of them may be visible to

machine instructions executed in a control or operating system mode.

Four Registers are essential for instruction Execution
• Program counter (PC): Contains the address of an instruction to be fetched

• Instruction register (IR): Contains the instruction most recently fetched

• Memory address register (MAR): Contains the address of a location in memory

• Memory buffer register (MBR): Contains a word of data to be written to memory or the word

most recently read

Many processor designs include a register or set of registers, often known as the program status

word (PSW), that contain status information. The PSW typically contains condition codes plus other

status information. Common fields or flags include the following:

• Sign: Contains the sign bit of the result of the last arithmetic operation.

• Zero: Set when the result is 0.

• Carry: Set if an operation resulted in a carry (addition) into or borrow (subtraction) out of a high-

order bit. Used for multiword arithmetic operations.

• Equal: Set if a logical compare result is equality.

• Overflow: Used to indicate arithmetic overflow.

• Interrupt Enable/Disable: Used to enable or disable interrupts.

• Supervisor: Indicates whether the processor is executing in supervisor or user mode. Certain

privileged instructions can be executed only in supervisor mode, and certain areas of memory can be

accessed only in supervisor mode.

UNIT-II

Page 15

Example Microprocessor Register Organizations

Figure 2.8 Example Microprocessor Register Organisation

• It is instructive to examine and compare the register organization of comparable systems. In this

section, we look at two 16-bit microprocessors that were designed at about the same time: the Motorola

MC68000 and the Intel 8086. Figures 2.8 a and b depict the register organization of each; purely internal

registers, such as a memory address register, are not shown.

• The Motorola team wanted a very regular instruction set, with no special-purpose registers. The

MC68000 partitions its 32-bit registers into eight data registers and nine address registers. The eight data

registers are used primarily for data manipulation and are also used in addressing as index registers. The

width of the registers allows 8-, 16-, and 32-bit data operations,determined by opcode. .The address

registers contain 32-bit (no segmentation) addresses; two of these registers are also used as stack pointers,

one for users and one for the operating system, depending on the current execution mode. Both registers

are numbered 7, because only one can be used at a time. The MC68000 also includes a 32-bit program

counter and a 16-bit status register.

• The Intel 8086 takes a different approach to register organization. Every register is special

purpose, although some registers are also usable as general purpose. The 8086 contains four 16-bit data

registers that are addressable on a byte or 16-bit basis, and four 16-bit pointer and index registers. The

data registers can be used as general purpose in some instructions. The four pointer registers are also used

implicitly in a number of operations; each contains a segment offset. There are also four 16-bit segment

registers. Three of the four segment registers are used in a dedicated, implicit fashion, to point to the

segment of the current instruction (useful for branch instructions), a segment containing data, and a

segment containing a stack, respectively. The 8086 also includes an instruction pointer and a set of 1-bit

status and control flags.

UNIT-II

Page 16

 INSTRUCTION CYCLE

An instruction cycle includes the following stages:

• Fetch: Read the next instruction from memory into the processor.

• Execute: Interpret the opcode and perform the indicated operation.

• Interrupt: If interrupts are enabled and an interrupt has occurred, save the current process state

and service the interrupt.

We now elaborate instruction cycle. First, we must introduce one additional stage, known as the indirect

cycle.

The Indirect Cycle

The execution of an instruction may involve one or more operands in memory, each of which

requires a memory access. Further, if indirect addressing is used, then additional memory accesses are

required. We can think of the fetching of indirect addresses as one more instruction stages. The result is

shown in Figure 2.9.

Figure 2.9 Instruction Cycle

After an instruction is fetched, it is examined to determine if any indirect addressing is involved. If so, the

required operands are fetched using indirect addressing. Following execution, an interrupt may be

processed before the next instruction fetch.

Figure 2.10 Instruction cycle State Diagram

UNIT-II

Page 17

Another way to view this process is shown in Figure 2.10. Once an instruction is fetched, its

operand specifiers must be identified. Each input operand in memory is then fetched, and this process

may require indirect addressing. Register-based operands need not be fetched. Once the opcode is

executed, a similar process may be needed to store the result in main memory.

Data Flow

The exact sequence of events during an instruction cycle depends on the design of the processor Let us

assume that a processor that employs a memory address register (MAR), a memory buffer register

(MBR), a program counter (PC), and an instruction register (IR).

During the fetch cycle, an instruction is read from memory. Figure 2.11 shows the flow of data

during this cycle. The PC contains the address of the next instruction to be fetched.This address is moved

to the MAR and placed on the address bus.

Figure 2.11 Data Flow, Fetch cycle

The control unit requests a memory read, and the result is placed on the data bus and copied into the

MBR and then moved to the IR. Meanwhile, the PC is incremented by 1, preparatory for the next fetch.

Once the fetch cycle is over, the control unit examines the contents of the IR to determine if it

contains an operand specifier using indirect addressing. If so, an indirect cycle is performed. As shown in

Figure 2.12, this is a simple cycle. The right-most N bits of the MBR, which contain the address

reference, are transferred to the MAR. Then the control unit requests a memory read, to get the desired

address of the operand into the MBR.

Figure 2.12 Data Flow, Indirect cycle

UNIT-II

Page 18

The fetch and indirect cycles are simple and predictable. The execute cycle takes many forms; the

form depends on which of the various machine instructions is in the IR. This cycle may involve

transferring data among registers, read or write from memory or I/O, and/or the invocation of the ALU.

Like the fetch and indirect cycles, the interrupt cycle is simple and predictable (Figure 2.13). The current

contents of the PC must be saved so that the processor can resume normal activity after the interrupt.

Thus, the contents of the PC are transferred to the MBR to be written into memory. The special memory

location reserved for this purpose is loaded into the MAR from the control unit. It might, for example, be

a stack pointer. The PC is loaded with the address of the interrupt routine.As a result,the next instruction

cycle will begin by fetching the appropriate instruction.

Figure 2.13 Data Flow, Interrupt Cycle

