Department of Computer Science & Engineering National Institute of Technology Srinagar						
Course Title	Data Structures Lab	Semester	4 th			
Department	Computer Science &	Course Code CST251				
_	Engineering					
Credits	01	L	T	P		
Course Type	Lab	0	0	2		

Course Objectives

- Develop ADT for stack and queue applications
- Implement tree and graph algorithms
- Implement and analyse internal and external sorting algorithms
- Design and implement symbol table using hashing technique

Learning Outcomes

Basic concepts of data, linear lists, strings, arrays and orthogonal lists, representation of trees & graphs, storage systems, Arrays, Recursion, Stacks, Queues, Linked lists, Binary trees, General Trees, Tree Traversal, Symbol Table and Searching Techniques, Sorting Techniques, Graphs.

Course Synopsis

To enable a student to have a practical command over the concepts learned in the course.

	Course Outline / Content			
Unit	Topics	Week		
1.	Implement singly and doubly linked lists.	1		
2.	Represent a polynomial as a linked list and write functions for polynomial addition.	1		
3.	Implement stack and use it to convert infix to postfix expression	1		
4.	Implement array-based circular queue.	1		
5.	Implement an expression tree. Produce its pre-order, in-order, and post-order traversals.	1		
6.	Implement binary search tree.	1		
7.	Implement priority queue using heaps	1		
8.	Implement hashing techniques	2		
9.	Implement various sorting techniques	2		
Text Books				
1.	Data Structures by Rajni Jindal			
2.	Data Structures - Schaum's Series			
References				
1.	Data Structures by Knuth	·		
2.	Data Structures by Farouzan			
3.	Data Structures using C and C++ by Langsam, Augestern, Tanenbaum.			