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Chapter 1

Introduction

Continnum mechanics is a mathematical framework for studying the transmis-
sion of force through and deformation of materials of all types. The goal is
to construct a framework that is free of special assumptions about the type of
material, the size of deformations, the geometry of the problem and so forth.
Of course, no real materials are actually continuous. We know from physics and
chemistry that all materials are formed of discrete atoms and molecules. Even
at much larger size scales, materials may be composed of distinet grains, e.g.,
a sand, or of grains of different constituents, e.g.. steel, or deformable particles
such as blood. Nevertheless, treating material as continmous is a great advantage
since it allows us to use the mathematical tools of continuous functions, such as
differentiation. In addtion to being convenient, this approach works remarkably
well. This is true even at size seales for which the justfication of treating the
material as a continnum might be debatable. The ultimate justification is that
predictions made using continuum mechanics are in accord with observations
and measurements.

Until recently, it was possible to solve a relatively small number of prob-
lems without the assumptions of small deformations and linear elastic behavior.
Now, however, modern computational techniques have made it possible to solve
problems involving large deformation and complex material behavior, This pos-
sibility has made it important to formulate these problems correctly and to be
able to interpret the solutions. Continnum mechanics does this.

The vocabulary of continuum mechanics involves mathematical objects called
tensors. These can be thought of as following naturally from vectors. Therefore,
we will begin by studying vectors. Although most students are acquainted with
vectors in some form or another, we will reintroduce them in a way that leads
naturally to tensors.
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Chapter 2

Vectors

Some physical quantities are described by scalars, e.g., density, temperature,
kinetic energy. These are pure numbers, although they do have dimensions. It
woitld make no physical sense to add a density. with dimensions of mass divided
by length cubed, to kinetic energy, with dimensions of mass times length squared
divided by time squared.

Vectors are mathematical objects that are associated with hoth a magnitude,
deseribed by a number, and a direction. An important property of vectors is
that they can be used to represent physical entities such as force, momentum
and displacement. Consequently, the meaning of the vector is (in a sense we will
make precise) independent of how it is represented. For example, if someone
punches you in the nose, this is a physical action that could be described by
a force vector. The physical action and its result (a sore nose) are, of course,
independent of the particular coordinate system we use to represent the force
vector. Hence, the meaning of the vector is not tied to any particular coordinate
svstem or description,

A vector u can be represented as a directed line segment, as shown in Figure
2.1. The length of the vector is denoted by w or by |ul. Multiplying a vector
by a positive scalar o changes the length or magnitude of the vector but not its
orientation. If & > 1, the vector au is longer than u; if o < 1, au is shorter
than u. If o is negative, the orientation of the vector is reversed. The addition
of two vectors u and v can be written

w=u+v (2.1)

Although the same symbol is used as for ordinary addition, the meaning here is
different. Vectors add according to the parallelogram law shown in Figure 2.1.
It is clear from the construction that vector addition is commutative

w=u+v=v-+u (2.2)

Note the importance of distinguishing vectors from scalars; without the boldface
denoting vectors, equation (2.1) would be incorrect: the magnitude of w is not

(1]
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ou ou ~u
o> a<l
7 (a=>1) (a<l)
Muluiplication of a vector by a scalar.
v
u
u+t+yv

Addition of two vectors.

Figure 2.1: Multiplication of a vector by a scalar (top) and addition of two
vectors (bottom),
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the sum of the magnitudes of u and v. Alternatively the “tail” of one vector
may be placed at the “head” of the other. The sum is then the vector directed
from the free “tail” to the free “head”. Implicit in both these operations is the
idea that we are dealing with “free” vectors. In order to add two vectors, they
can be moved, keeping the length and orientation, so that both vectors emanate
from the same point or are connected head-to-tail.

The parallelogram rule for vector addition turns out to be a erucial property
for vectors. Note that it follows from the nature of the physical quantities, e.g..
velocity and force, that we represent by vectors. The rule for vector addition
is also one way to distinguish vectors from other quantities that have both
length and direction. For example, finite rotations abont orthogonal axes can be
characterized by length and magnitude but cannot be vectors because addition
is not commutative (see Malvern, pp. 15-16). Hoffman ( About Vectors, p. 11)
relates the story of the tribe (now extinct) that thought spears were vectors
because they had length and magnitude. To kill a deer to the northeast, they
would throw two spears, one to the north and one to the east. depending on
the resultant to strike the deer. Not surprisingly, there is no trace of this tribe,
which only confirms the adage that “a little bit of knowledge can be a dangerous
thing."

The procedure for vector subtraction follows from multiplication by a scalar
and addition. To subtract v from u, first multiply v by —1. then add —v to u:

w=u—v=u+(-v) (2.3)

There are two ways to multiply vectors: the scalar or dot product and the
vector or cross product. The scalar product is given by

u-v = uvcos(#) (2.4)

where # is the angle between u and v. As indicated by the name, the result
of this operation is a scalar. As shown in Figure 2.2, the scalar product is the
magnitude of v multiplied by the projection u onto v, or vice versa. If # = 7/2,
the two vectors are orthogonal; if 8 = 7, the two vectors are opposite in sense,
i.e., their arrows point in opposite directions. The result of the vector or cross
product is a vector

w=uxv (2.5)

The magnitude of the result is w = wwv sin(#), where @ is again the angle between
u and v. As shown in Figure 2.2, the magnitude of the cross product is equal
to the area of the parallelogram formed by u and v. The direction of w is
perpendicular to the plane formed by u and v and the sense is given by the
right hand rule: If the fingers of the right hand are in the direction of u and
then curled in the direction of v, then the thumb of the right hand is in the
direction of w. The three vectors u, v and w are said to form a right-handed
system.

The triple vector produect (u x v) - w is equal to the volume of the paral-
lelopiped formed by u, v and w if they are right-handed and minus the volume

7 Do not distribute without permission
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Cross product of two vectors

Figure 2.2: Scalar and vector products.

8 Do not distribute without permission
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The triple vector product u X v #W 15 the volume of the parallelpiped formed
by the vectors if the order of the vectors is ight-handed.

Figure 2.3: Triple vector product.
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if they are not (Figure 2.3). The parenthesis in this expression can be omitted
because it makes no sense if the dot product is taken first (because the result is
a scalar and the cross product is an operation between two vectors).

Now consider the triple vector product ux (v x w). The vector v x w must
be perpendicular to the plane containing v and w. Hence, the vector product
of v x w with another vector u must result in a vector that is in the plane of v
and w. Consequently, the result of this operation can be can be represented as

ux (v w)=av+ Bw (2.G)

2.1 Additonal Reading

Chadwick, Chapter 1, Section 1; Malvern, Section 2.1, 2.2, 2.3; Reddy, 2.2.1 -
3.

10 Do not distribute without permission
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Chapter 3

Tensors

A tensor is a linear, homogeneous vector-valued vector function. “Vector-valued
vector function” means that a tensor operates on a vector and produces a vector
as a result of the operation as depicted schematically in Figure 3.1. Hence, the
action of a tensor F on a vector u results in another vector v:

v =F(u) (3.1)
“Homogenecous” (of degree 1) means that the function F has the property
Flau) = aF(u) = av (3.2)

where a is a scalar. (Note: A function f(x,y) is said to be homogeneous of
degree n if faz,ay) = a” f(r,y). A function f(z,y) is linear if

flz,y)=ax+By+ec (3.3)
Hence, f(x,y) = +/2? + y* is homogeneous of degree one but not linear. Simi-

larly. fiz,y) = a(x + y) + ¢ is linear but not homogeneous.) The function F is

v

_— F, atensor

Figure 3.1: Schematic illustration of the effect of a tensor on a vector, The
tensor acts on the vector u and outputs the vector v,

11
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“linear” if
F(u; +uz) = F(uy) + Fuz) = vy 4+ va (3.4)

where vi = F(u;) and vy = F{uy)
The definition of a tensor embodied by the properties (3.1), (3.2), and (3.4)
suggests that a tensor can be represented in coordinate-free notation as

v=F.u (3.5)

The operation denoted by the dot is defined by the properties (3.2). and (3.4).
Therefore, if we want to determine if a "black box", a function F, is a tensor,
we input a vector u into the box. If the result of the operation represented by
F is also a vector, say v, then F must be a tensor. Since both sides of (3.5) are
vectors, we can form the scalar product with another vector, say w,

w-v=w-:-F-u (3.6)

and the result must be a scalar. Because scalar multiplication of two vectors is
commutative, the order of the vectors on the left side can be reversed. On the
right side, it would be necessary to write (F -u) - w. The parentheses indicate
that the operation F - u must be done first; indeed, multiplying u - w first
produces a scalar and the dot product of a scalar with a vector (or a tensor) is
not an operation that is defined.

In contrast to the dot product of two vectors, the dot product of a tensor
and a vector is not commutative. Reversing the order defines the transpose of

the tensor F i.e.,
F.-u=u-F7 (3.7)

Thus, it follows that
v-F-u=u-FT.v (3.8)

where parentheses are not needed because the notation clearly indicates that
the two vectors are not to be multiplied. If F = FT, then the tensor F is said to
be symmetric; if F = —F7, then F is antisymmetric or skew-symmetric. Every
tensor can be separated into the sum of a symmetric and a skew-symumetric
tensor by adding and subtracting its transpose

F=—(F+F") +%{F-FT) (3.9)

bl || —

Generally, the output vector v will have a different magnitude and direction
from the input vector u. In the special case that v is the same as u, then for
obvious reasons, the tensor is called the identity tensor and denoted I. Hence,
the identity tensor is defined by

u=1I-u (3.10)

for all vectors u. Is it possible to operate our tensor black box in reverse? In
terms of Figure 3.1, if we stick v in the right side, will we get u out the left?

12 Do not distribute without permission
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The answer is “not always” although in many cases it will be possible for the
particular tensors we are concerned with. Later we will determine the conditions
for which the operation depicted in Figure 3.1 is reversible. If it is, then the
operation defines the inverse of F

u=F1'.v (3.11)
Substituting for v from (3.5) reveals that
F' . F=1 (3.12)

and that the dot product between two tensors produces another tensor.
If the output vector v has the same magnitude as the input vector u, but a
different direction, then the tensor operation results in a rotation

v=HR:-u (3.13)

and the tensor is called orthogonal (for reasons we will see later). Because u
and v have the same magnitudes

Using (3.7) to rewrite the left scalar product and (3.10) to rewrite the right
gives N
u-R" R-u=u-I-u (3.14)

where no parentheses are necessary because the notation makes clear what is to
be done. Because (3.14) applies for any vector u, we can conclude that

R".R=1 (3.15)

and comparing with (3.12) reveals that the transpose of an orthogonal tensor
is equal to its inverse. Physically, the rotation of a vector to another direction
can always be reversed so we can expect the inverse to exist.

Is it possible to find an input vector u such that the output vector v has
the same direction, but possibly a different magnitude? Intuitively, we expect
that this is only possible for certain input vectors, if any. If the vector v is in
the same direction as u, then v = Au, where A is a scalar. Substituting in (3.5)
vields

F.-u=Au (3.16)

or
(F=AD)-u=0 (3.17)

If the inverse of F — Al exists then the only possible solution is u = 0. Conse-
quently there will be special values of A and u that satisfy this equation only
when the inverse does not exist. A value of A that does so is an eigenvalue
(principal value, proper number) of the tensor F and the corresponding direc-
tion given by u is the eigenvector (principal direction). It is clear from (3.17)
that if u is a solution, then so is au where a is any scalar. Hence, only the

13 Do not distribute without permission
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direction of the eigenvector is determined. [t is customary to acknowledge this
by normalizing the eigenvector to unit magnitude, g = u/u.

Later we will learn how to determine the principal values and directions and
their physical significance. But, because all of the tensors we will deal with are
real and many of them are symmetric, we can prove that the eigenvalues and
eigenvectors must have certain properties without having to determine them
explicitly.

First we will prove that a real, symmetric 2nd order tensor has real eigen-
values. Let T be a real symmetric 2nd order tensor with eigenvalues Ag. K =1,

I1, TIT and corresponding eigenvectors peg., K = 1, 11, IT1. Then
T - iy = Ak i, (no sum on K) (3.18)
Taking complex conjugate of both sides gives
T jige = Ay, (no sum on K) (3.19)
Multipling (3.18) by f1, vields
frpe T e = Ag iy - pge, (no sum on K) {3.20)
and (3.19) by py vields
JIrs i i B = .-_'\Kjlh- e, (no sum on K) (3.21)
Because T = T7 | the left hand sides are the same. Therefore, subtracting gives
0= (Mg — ;\;.;]j.th- . (no sum on K) (3.22)

Since ftye - pye # 0, A = A and hence, the eigenvalues are real.
Now prove that the eigenvectors corresponding to distinet eigenvalues are
orthogonal. For eigenvalue A; and corresponding eigenvector g,

T pp = A py (3.23)
and similarly for A;; and g,
Ty =Airpyy (3.24)
Dotting (3.23) with gy, and (3.24) with g, yields

pppTopyp = Arpypy (3.25a)
pp T gy Arr By By (3.25b)

Because T =TT subtracting vields
(Ar = Nn)py - gy =0 (3.26)

Because the cigenvalues are assumed to be distinet Ay 2 App. and, consequently
pyp g =00 18 A = App # A, any vectors in the plane perpendicular to g,

14 Do not distribute without permission
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can serve as eigenvectors. Therefore, it is always possible to find at least one
set of orthogonal eigenvectors,

Lastly, we note the tensors we have introduced here are second order tensors
because they input a vector and output a vector. We can, however, define nth
order tensors T by the following recursive relation

T{",‘u=TEu_lh [3-27}

If T is defined as a scalar then (3.27) shows that a vector can be considered
as a tensor of order one. Later we will have occasion to deal with 3rd and 4th
order tensors.

15 Do not distribute without permission
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Chapter 4

Coordinate Systems

We have discussed a number of vector and tensor properties without referring
at all to any particular coordinate system. Philosophically, this is attractive
because it emphasizes the independence of the physical entity from a particular
system. This process soon becomes cumbersome, however, and it is convenient
to discuss vectors and tensors in terms of their components in a coordinate
system. Moreover, when considering a particular problem or implementing the
formulation in a computer, it is necessary to adopt a coordinate system.

Given that a coordinate system is necessary, we might take the approach
that we should express our results on vectors in a form that is appropriate for
any coordinate svstem. That is, we will make no assumptions that the axes of
the system are orthogonal or scaled in the same way and so on, Indeed, this is
often useful and can lead to a deeper understanding of vectors. Nevertheless,
it requires the introduction of many details that, at least at this stage, will be
distracting to our study of mechanics.

For the reasons just-discussed. we will consider almost exclusively rectan-
gular cartesian coodinate systems. We will, however, continue to use and em-
phasize a coodinate free notation. Fortunately, results that can be expressed in
a coordinate free notation, if interpreted properly, can be translated into any
arbitrary coordinate system.

4.1 Base Vectors

A rectangular, cartesian coordinate syvstem with origin O is shown in Figure
4.1. The axes are orthogonal and are labelled x,y, and z, or x;, r; and z5. A
convenient way to specify the coordinate system is to introduce vectors that are
tangent to the coordinate directions. More generally, a set of vectors is a basis
for the space if every vector in the space can be expressed as a unique linear
combination of the basis vectors. For rectangular cartesian systems, these base
vectors can be chosen as unit vectors
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lell=e1-e1 =1, |eg] = |eg|=1 (4.1)

that are orthogonal:
e ces=0,e:e5=0,e3-e3=0 (4.2)

The six equations, (4.1) and (4.2), and the additional three that result from
reversing the order of the dot product in (4.2) can be written more compactly
as
. J 1, i i=j -

o185 = dyy ‘{ 0 if i #j (43)
where the indicies (7, j) stand for (1,2,3) and 4,; is the Kronecker delta. There-
fore. (4.3) represents nine equations. Note that one i and one j appear on
each side of the equation and that each index can take on the value 1, 2, or 3.
Consequently, i and j in (4.3) are free indicies.

The projection of the vector u on a coordinate direction is given by

w=e-u (4.4)

where i = 1,2, 3 and «u; is the scalar component of u. We can now represent the
vector u in terms of its components and the unit base vectors:

u = ey + uges + uzey (4.5)

Each term, e.g., uye; is a vector component of u. The left side of the equation
is a coordinate free representation; that is, it makes no reference to a particular
coordinate system that we are using to represent the vector. The right side
is the component form; the presence of the base vectors e, e; and ey denote
explicitly that uy, us, and ug are the components with respect to the coordinate
system with these particular base vectors. For a different coordinate system,
with different base vectors, the right side would be different but would still
represent the same vector, indicated by the coordinate free form on the left
side.

4.2 Index Notation

The equation (4.5) can be expressed more concisely by using the summation
sign:

3
u= Eukek = upe (4.G)
k=1
where “&" is called a summation index because it takes on the explicit values
1. 2, and 3. It is also called a dummy index because it is simply a placeholder:
changing “k" to “m” does not alter the meaning of the equation. Note that “£"
appears twice on RHS but not on LHS. (In contrast, the free index " on the
right side of (4.3) cannot be changed to “m” without making the same change

18 Do not distribute without permission
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4 y:X2

93 -=> B

Z,X,

Figure 4.1: Rectangular, cartesian coordinate system specified by unit, orthog-
onal base vectors.

19 Do not distribute without permission
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on the other side of the equation.) Because the form (4.6) occurs so frequently,
we will adopt the summation convention: The summation symbol is dropped
and summation is implied whenever an index is repeated in an additive term (a
term separated by a plus or minus sign) on one side of the equation. This is a
very compact and powerful notation but it requires adherence to certain rules.
Regardless of the physical meaning of the equation, the following rules apply:

e A subscript should never appear more than twice (in an additive term) on
one side of an equation.

e If a subscript appears once on one side of an equation it must appear
exactly once (in each additive term) on the other side

For example, both of the following two equations are incorrect because the
index “3" appears once on the right side but not at all on the left:

w; = ui+v (4.7a)
vy Skt (4.7b)

iy

The following equation is incorrect because the index “k” appears three
times in an additive term:

wi; = A Bjpu (4.8)

In contrast, the equation

a = U + RSk + Prgi (4.9)

is correct. Even though “A&" appears six times on the right side, it only appears
twice in each additive term.

We can now use the scalar product, the base vectors and index notation
to verify some relations we have obtained by other means. To determine the
component of the vector u with respect to the ith coordinate direction we form
the scalar product e; - u and then express u in its component form:

e -u=e; - (uje;) (4.10)

Note that it would be incorrect to write u;e; on the right side since the index
i would then appear three times. The scalar product is an operation between
vectors and, thus, applies to the two hasis vectors. Their scalar produoct is
given by (4.3). Recalling that the repeated 7 implies summation and using the
property of the Kronecker delta (4.3) yvields

e-u = u;(e - e;) (4.11a)
3

= Hjﬁ,'_;' = Z!ﬁ,‘j'ﬂj = djjuy + djaus + dizuy (4.11b)
J=1

= U (4.11c)

20 Do not distribute without permission
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Thus the inner product of a vector with a basis vector gives the component of
the vector in that direction. This operation can be used to convert coordinate-
free expressions to their cartesian component form. For example, the sum of
two vectors is given by

wW=u-+v (4.12)
in the coordinate free notation. Dotting both sides with the base vectors e
vields the component form

uy; = i + 1 (4.13)

As a final example, consider the expression for the scalar product in terms

of the components of the vectors:

u-v = (ue;)-(ve;) (4.14a)
= uv;(e;e;) (4.14b)

3 3
= uvd,; = ZZ w0, = Zujuj = ULk (4.14c)

il j=1

4.3 Tensor Components

The definition of a tensor embodied by the properties (3.1), (3.2), and (3.4)

snggests that a tensor can be represented in coordinate-free notation as
v=F-u (4.15)

The cartesian component representation follows from the procedure for identi-
fving the cartesian components of vectors, i.e.,

vy = ep-v=e-{F-uye} (4.16)
= (ey-F-er)uy

The second line can be represented in the component form

v = Faw (4.17)
or in the matrix form
L Fnn Fin Fy g
v | = | Fan Fnn Fn us (4.18)
L Fasy Fy Fis iy
where the
Fg.; =@ F - e [:"1.19:]
are the cartesian components of the tensor F (with respect to the base vectors

e;}l.

4.4 Additional Reading

Chadwick, Chapter 1, Section 1; Malvern, Sections 2.1, 2.2, 2.3; Aris, 2. - 2.3.
Reddy, 2.2.4 - 5.

21 Do not distribute without permission
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Change of Orthonormal
Basis

Consider the two coordinate systems shown in Figure 8.1: the 123 system with
base vectors ej, ez, e3 and the 1'2'3" system with base vectors e}. e}, e}. In
Chapter 3 we noted that an orthogonal tensor is one that rotates a vector
without changing its magnitude. Thus we can use an orthogonal tensor to
relate the base vectors in the two systems,

The base vectors in the primed and unprimed systems are related by

e, =A-e (8.1)
where A is an orthogonal tensor. Forming the dot product in (8.1) gives
e, -ej =cos(i,j) =e;i- A-e; = A;; (8.2)

where cos(i, j') is the cosine of the angle between the i axis and the j' axis.
Thus, in the component A;;, the second subscript (j in this case) is associated
with the primed system. Either (8.1) or (8.2) leads to the dyadic representation

# @
A =ee; (8.3)
Because hoth the new system and the old system of base vectors is orthonormal

e e dij=(A-e) (A-e)
{e,--A""}I (A -ej)

the product

AT . A=1 (8.4)

Thus, as also noted earlier, inverse of an orthogonal tensor is equal to its trans-
pose. In index notation, (8.4) is expressed as

AicAji = A Aij = by (8.5)

39
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Figure 8.1: Rotation of the base vectors e; to a new system el.

40 Do not distribute without permission
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(where the first expression results from noting that the produet in (8.4) can be
taken in either order).

Consequently, the unprimed base vectors can be given in terms of the primed
by

€ = AT - e:u (3'5)

and

{ [ [ T .l T - 4
€m €, = CUS(?""“ l: =€, A €Cn = Anm == "1?!!" (H”

which agrees with (8.2). These properties reinforce the choice of the name
orthogonal for this type of tensor: it rotates one system of orthogonal unit
vectors into another system of orthogonal unit vectors,

8.1 Change of Vector Components

Now consider a vector v. We can express the vector in terms of components in
either system
rof
V= 1€ = ;€ (8.8)

since v represents the same physical entity. It is important to note that both
the v; and the v;- represent the same vector; they simply furnish different de-
scriptions. Given that the base vectors are related by (8.1) and (8.6), we wish
to determine how the v; and the v} are related. The component in the primed
system is obtained by forming the scalar product of v with the base vector in

the primed system:

v, = ep-v=e)-(vie;) (8.9a)
= vey-e (8.9h)
= vidig (8.9¢)

The three equations (8.9) can also be represented as a matrix equation

vy An A A
vy | = [ v v vy ] Aoy Az Agg (8.10)
vy Az; Azz Aa

or, alternatively, as

" An Aa Am vy
vy | = A1z Az As Uy (8.11)
vy Az Ay Ags U3

Similarly, the components of v in the unprimed system can be expressed in
terms of the components in the primed system

v = e-v=e;-(vpe}) (8.12a)
= (e;-e})v} (8.12b)
= Auvg (8.12¢)

41 Do not distribute without permission
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or in matrix form
[v] = A[V] (8.13)
Note that the tensor A rotates the unprimed base vectors into the primed
base vectors, according to (8.1), it is the components of AT that appear in the
matrix equation (8.11) as implied by the index form (8.9¢). To interpret this
result in another way rewrite (8.9a) as

v, = e.-v
= (A-ex)-v
- (e,,.-AT) o
= e (AT )

Thus the v are the components of the vector AT - v on the unprimed system.
This relation expresses the equivalence of rotating the coordinate system in one
direction relative to a fixed vector and rotating a vector in the opposite direction
relative to a fixed coordinate system.

8.2 Definition of a vector

Previously, we noted that vectors are directed line segments that add in a certain
way. This property of addition reflects that nature of addition for the physical
quanities that we represent as vectors, e.g. velocity and force. 'We now give
another definition of a vector. This definition reflects the observation that
the quantities represented by vectors are physical entities that cannot depend
on the coordinate systems used to represent them. A (cartesian) vector v
in three dimensions is a quantity with three components vy, v, v3 in the one
rectangular cartesian system 0123, which, under rotation of the coordinates to
another cartesian system 1’2’3 (Figure 8.1) become components v, v5, v with
vy = Ajiv; (8.14)
where
Aji = cos(i',j) =€) - e; (8.15)
This definition can then used to deduce other properties of vectors., For
example, we can show that the sum of two vectors is indeed a vector. If u and
v are vectors then t = u + v is a vector because it transforms like one:

ti = ul+vi=Ajuj + Ajiv, (8.16a)
= A_,—;—{uJ—I—t:_j'J - AJ','n'.J' [816[]}

8.3 Change of Tensor Components

Expressions for the components of F with respect to a different set of base
vectors, say e, also follow from the relations for vector components:

vk = Fruy (8.17)
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and
“L = Amk FTIH'I iy, (8.18a)
= 'dIJIkFTrUI -‘L.HI: (H IB]]:I
= Fuj (8.18¢)

Because this result applies for ell vectors u and v
FJ':'! = AF'IkRIIrIAJI! [ng}l

where, as before,
r i
Amp = €+ 0 =cos(m, k) (8.20)
This can be written in matrix form as

: An An Ag Fu Fia Fug An A A
[F]= Az Ap Ay Fy Fpn Fy An Axn Ay | (8.21)

A 13 AE:{. -'1-3.'!. Eﬂ Ei'z -FEiH -'i:i.'i A:‘IE -*1!.'13
ar =
[F]=[A]" [F] [A] (8.22)
Similarly, the inversion is given by
Fi; = AudiF), (8.23)
or -
[F] = [A] [F'][A] (8.24)

The relations between components of a tensor in different orthogonal coordinate
systems can be used as a second definition of a tensor that is analagous to the
definition of a vector: In any rectangular coordinate system, a tensor is defined
by nine components that transform according to the rule (8.19) when the relation
between unit base vectors is (8.20).

As noted in Chapter 3. a symmetric tensor is one for which T = TT. Be-
cause this relation can be expressed in coordinate-free form, we expect that the
components are symmetric in any coordinate system. We can show this directly
for rectangular cartesian syvstems using the relation (8.19). If the components of
a tensor T are symmetric in one rectangular cartesian coordinate system, they
are symimetric in any rectangular cartesian system:

T = Tee; whereT;; =T} (8.25)
Ty = AuAuTy = AuAuTy; (8.26)
= AjAaTj = AuAuTy; =T, (8.27)

8.4 Additional Reading

Malvern. Sec. 2.4, Part 1. pp. 25-30; Chadwick, pp. 13 - 16; Aris 2.1.1, A.G.
Reddy, 2.2.6.
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Chapter 11

Traction and Stress Tensor

11.1 Types of Forces

We have already said that continuum mechanics assumes an actual body can
be described by associating with it a mathematically continuous body.  For
example, we define the density at a point P as

. Am
P = lim

AV—0 AV S

where AV contains the point P and Am is the mass contained in AV. Contin-
uum mechanics assumes that it makes sense or, at least is useful, to perform this
limiting process even though we know that matter is discrete on an atomic scale.
More precisely, p is the average density in a representative volume around the
point P. What is meant by a representative volume depends on the material
being considered. For example, we can model a polyerystalline material with
a density that varies strongly from point-to-point in different grains. Alterna-
tively, we might use a uniform density that reflects the density averaged over
several grains.

Just as we have considered the mass to be distributed continuously, so also
do we consider the forces to be continuously distributed. These may be of two
tvpes:

1. Body forces have a magnitude proportional to the mass, and act at a
distance, e.g. gravity, magnetic forces (Figure 11.1). Body forces are
computed per unit mass b or per unit volume ph:

o _
bfx}:c.'t-'ﬂu}ﬁ? (11.2)

The continuum hypothesis asserts that this limit exists, has a unique value,
and is independent of the manner in which AV — 0.

a9
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7
m=pAV/

Figure 11.1: Hustration of the force f(x, ) acting on the volume element AV,

2. Surface forces are computed per unit area and are contact forces. They
may be forces that are applied to the exterior surface of the body or they
may be forces transmitted from one part of a body to another.

Consider the forces acting on and within a body (Figure 11.2). Slice the
body by a surface R (not necessarily planar) that passes through the point @
and divides the body into parts 1 and 2. Remove part 1 and replace it by the
forces that 1 exerts on 2. The forces that 2 exerts on 1 are equal and opposite.
Now consider the forces (exerted by 1 on 2) on a portion of the surface having
area AS and normal n (at @). From statics, we know that we can replace
the distribution of forces on this surface by a statically equivalent force Af and
moment Am at . Define the average fraction on AS as

AF

{i“-s:l —_— i
At AS (11.3)
Now shrink ' keeping point ¢ contained in (. Define traction at a point ¢} by
Af
n) _ 1
v = Jim x5 i)

This is a vector (sometimes called “stress vector”) and equals the force per unit
area (intensity of force) exerted at @@ by the material of 1 (side into which n
points) on 2. In addition, we will assume that

JEE:}E =4 (13
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Figure 11.2: The surface i passes through the point € and divides the body
into two parts. The curve €' contains ¢ and encloses an area AS. The unit
normal to the surface at ¢ is n. The net force exerted by 1 on 2 across AS is
Af and the net moment is Am,
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This will necessarily be the case if the couple is due to distributed forces. The
theory of couple stresses does not make this assumption.
In taking the limit (11.4), we have assumed the following:
1. Body is continuous.
2. Af varies continuously.
3. No concentrated force at Q.
4. Limit is independent of the manner in which AS — () and the choice
of the surface AS as long as the normal at Q is unique.
Note that traction is a vector and will have different values for different
orientations of the normal n (through the same point) and different values at
different points of the surface.

11.2 Traction on Different Surfaces

The traction at a point depends on the orientation of the normal. More
specifically, the traction will be different for different orientations of the nor-
mal through the point. To investigate the dependence on the normal, we will

use Newton's 2nd law
dv

Y E= m— (11.6)

where F is the force, m is the mass, and v is the velocity. Now apply this to a
slice of material of thickness i and area AS (Figure 11.3);

1}
t™WAS + tYAS 4 pbASH = pﬁSh.% (11.7)
where we have written the mass as pASh. Dividing through by AS yields

)
t(™ 4 ¢(-" 4 pbh = """T: (11.8)
L
Letting h — 0 vields
t™ = —¢(-n (11.9)

Thus, the traction vectors are equal in magnitude and opposite in sign on
two sides of a surface. In other words, reversing the direction of the normal to
the surface reverses the sign of the traction vector. We can express the traction
on planes normal to the coordinate directions t'* in terms of their components

t) = Tije; + Tizer + Tizey (11.10a)
tl*dl = e + Thsen + Thgey (11.10b)
t) = Tyey+ Tues + Tazes (11.10c)

These three equations can be written as

t®) = Te; (11.11)
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tﬁ-m
A

~ 7

-

/

tlbl

Figure 11.3: Tractions acting on opposite sides of a thin slice of material.

where the first index § denotes the direction of the normal to the plane on which
the force acts and the 2nd index j denotes the direction of the force component.
We can also express the traction as the scalar prodet of e; with a tensor.

t“i =g {Tmnemen} “--" 12]

The term in parentheses is the stress tensor T and the T;; are its cartesian
components. 11y, Tas, Ty are normal stresses, and Tyo, Ty, Tao, Tag. Ty, Ty are
shear stresses. Typically, in engineering, normal stresses are positive il they
act in tension. In this case a stress component is positive if it acts in the
positive coordinate direction on a face with outward normal in the positive
coordinate direction or if it acts in the negative coordinate direction on a face
with outward normal in the negative coordinate direction (Note that for a bar in
equilibrium the forces acting on the ends of the bar are in opposite directions but
these correspond to stress components of the same sign.).Often, in geology or
geotechnical engineering, the sign convention is reversed because normal stresses
are typically compressive.
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X,
L " TIE
Ti;
12 T”
g ¥

X,

Figure 11.4: Illustrates the labelling of the components of the stress tensor,
Remember that the cube shown represents a point.

11.3 Traction on an Arbitrary Plane (Cauchy
tetrahedron)

Equation (11.10) gives the tractions on planes with normals in the coordinate
directions but we would like to determine the traction on a plane with a normal
in an arbitrary direction. Figure 11.5 shows a tetrahedron with three faces
perpendicular to the coordinate axes and the fourth (oblique) face with a normal
vector n.  The oblique face has area AS and the area of the other faces can be

expressed as
AS; =n;AS (11.13)

The volume of the tetrahedron is given by
;1 .
AV = ;;_i—hﬂ.b (11.14)
where & is the distance perpendicular to the oblique face through the origin.
Appling Newton's 2nd Law to this tetrahedron gives

dv
dt
In the second term, we have used (11.9) to express the sum of the forces acting

on the planes perpendicular to the negative of the coordinate directions. Divide
through by AS and let h — 0. The result is

tiMAS + (-tWAS;) + pbAV = pAV (11.15)

t = tOn; = mt™ 4 nat@ 4 ngt® (11.16)
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X;

L

-£” AS,

x! "fa Al S;_]

Figure 11.5: Tetrahedron with tractions acting on the faces.

Substituting (11.10) yields
t® = n,Ti;e;=n-T (11.17)

This expression associates a veetor t'™ with every direction in space n by means
of an expression that is linear and homogeneous and, hence, establishes T as a
tensor, Since the n appears on the right side we will drop it as a superscript on
t hereafter,
Because T is a tensar, its components in a rectangular cartesian system must
transform accordingly
EE T . (11.18)
where
’
Api = eje, (11.19)

11.4 Symmetry of the stress tensor

We can also show that T is a symmetric tensor (later, we will give a more gen-
eral proof) by enforcing that the sum of the moments is equal to the moment of
inertia multiplied by the angular acceleration for a small cuboidal element cen-
tered at (z), x2.23) with edges Az, Ars and Azg(not shown). For simplicity,
consider the element to be subjected only to shear stresses Ty and Ty in the
rixy plane. The moment of inertia about the center of this element is

r
12

I = =Az AxsAzy(Ax? + Axd) (11.20)
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Summing the moments yields

A Ax
[Tn;:{-r'l + %.:g)ﬁm + Tyalxy - ;l

1
P oy ) }é‘.lfz] &Igﬁ..‘l‘iidt‘l?l ]
1 | 1
= [T:_gl (Il. I + .ﬁ.’i"g ;] + T-‘gl f.!-'] y Ly = :;&Ig]] ﬂ:i’.'[ﬁ.'i"_'; ;.‘:’i.‘tz
e %{&Itﬂrgﬁx;;}[&arf + .’l'u::ﬁ]

where the Az /2 and Az, /2 in the first two lines are the moment arms. Dividing
through by AxyArsAxy and letting Az yArs — 0 yvields

i (11.22)

and. similarly,
T = Tj; (11.23)

Later we will give a more general derivation of this result and see that it does
not pertain when the stress is defined per unit reference (as distinguished from
current ) area.

11.5 Additional Reading

Malvern, 3.1, 3.2; Chadwick, 3.3; Aris, 5.11 - 5.15; Reddy, 4.1-4.2.
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3. MEASURES OF STRESS

3.1 Mass and density

Mass is a physical variable associated with a body. At the intuitive level, mass is perceive
be a measure of the amount of material contained in an arbitrary portion of body. As such
non-negative scalar quantity independent of the time, Mass is additive, that is the mass of a b
is the sum of the masses of its parts. These statetments imply the existence of a scalar fiel
assigned to each particle A" such that the mass of the body B currently occupying finite vol
v(B) is determined by

m(B) = odv . (

v(B)

¢ is called the density or the mass density of the material composing B. As introduced, g del
the mass per unit volume. If the mass is not continuous in B, then instead of (3.1) we write

m(B) = f -~ odv + Z Ma (
LH] o

where the summation is taken over all diserele masses contained in the body. We shall be des
with a continuous mass medium in which (3.1) is valid, which implies that m(B) — 0 as v(B) -
We therefore have

0<p<oc. (

3.2 Volume and surface forces

The forces that act on a continuum or between portions of it may be divided into long-n
Jorces and short-range forces.

Long-range forces are comprised of gravitational, electromagnetic and inertial forces, T
forces decrease very gradually with increasing distance between interacting particles. As a re:
long-range forces act uniformly on all matter contained within a sufficiently small volume, so t
they are proportional to the volume size involved. In continuum mechanices, long-range forces
referred to as volume or body forces.

The body force acting on B is specified by vector field f defined on the configuration B. ’
field is taken as measured per unit mass and is assumed to be continuous. The total body f
acting on the body B currently occupying finite volume v(B) is expressed as

F(B) = [ N (

Short-range forces comprise several types of molecular forces. Their characteristic featu
that they decrease extremely abruptly with increasing distance between the interacting parti
Hence, they are of consequence only when this distance does not exceed molecular dimensions
a result, if matter inside a volume is acted upon by short-range forees originating from interact
with matter outside this volume, these forces only act upon a thin layer immediately belov
surface. In continuum mechanies, short-range forces are called surface or contact forces and
specified more closely by constitutive equations (Chapter 5).
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3.3 Cauchy traction principle

A mathematical description of surface forces stems from the following Cauchy traction prine

We consider a material body b(t) which is subject to body forces f and surface forces §.
p be an interior point of b(t) and imagine a plane surface a® passing through point p (sc
times referred to as a cutting plane) so as to partition the body into two portions, design
I and II (Figure 3.1). Point p is lying in the area element Aa® of the cutting plane, whic
defined by the unit normal i pointing in the direction from Portion I into Portion 11, as sh
in Figure 3.1. The internal forces being transmitted across the eutting plane due to the ac
of Portion II upon Portion I will give rise to a force distribution on Aa® equivalent to a re
tant surface force Ag, as also shown in Figure 3.1. (For simplicity, body forces and surface fo
acting on the body as a whole are not draw
Figure 3.1.) Notice that Ag are not neces
ily in the direction of the unit normal veeto
The Cauchy traction principle postulates that
limit when the area Aa® shrinks to zero, wi
remaining an interior point, exists and is give

= lim
o= lim >
() Aa*—0 Aa®

Obviously, this limit is meaningful only if
degenerates not into a curve but into a poir

Figure 3.1.
Surface force on surface element Aa®.

The vector t_;:,—,-, is called the Cauchy stress
tor or the Cauchy traction vector (force per
area). It is important to note that, in general, f"lﬁ"ﬂ depends not only on the position of p on
but also the orientation of surface Aa®, i.e., on its external normal 7i. This dependence is th
fore indicated by the subscript 7. ¥ Thus, for the infinity of cutting planes imaginable thre
point p, each identified by a specific 7, there is also an infinity of associated stress vectors f:;,;
a given loading of the body.

We incidentally mention that a continuous distribution of surface forces acting across s
surface is, in general, equivalent to a resultant force and a resultant torque. In (3.5) we have n
the assumption that, in the limit at p, the torque per unit area vanishes and therefore there i
remaining concentrated torque, or couple stress. This material is called the non-polar conting
For a discussion of couple stresses and polar media, the reader is referred to Eringen, 1967,

3.4 Cauchy lemma

To determine the dependence of the stress vector on the exterior normal, we next apply
principle of balance of linear momentum to a small tetrahedron of volume Av having its ve
at p, three coordinate surfaces Aay, and the base Aa on a with an oriented normal 7 (Fi
3.2). The stress vector ' on the coordinate surface x = const. is denoted by —fj.

“The assumption that the stress vector f14 depends only on the outer normal vector @ and not on differe
geometric property of the surface such as the curvature, has been introduced by Cauchy and is referred to a
Cauchy assumption.

"Since the exterior normal of a coordinate surface x; = const. is in the direction of —x, without lo
generality, we denote the stress vector acting on this coordinate surface by —{, rather than t;.
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3.3 Cauchy traction principle

A mathematical description of surface forces stems from the following Cauchy traction principle.

We consider & material body #(t) which is subject to body forces [ and surface foroes . Let
p be an interior point of b(t) and imagine a plane surface a* passing through point p (some-
times referred to as a culting plane) so as to partition the body into two portions, designated
I and I (Figure 3.1). Point p is lving in the area element Aa® of the cutting plane, which is
defined by the unit normal 7 pointing in the direction from Portion 1 into Portion 11, as shown
in Figure 3.1. The internal forces being transmitted across the cutting plane due to the action
of Portion II upon Portion | will give rise to a force distribution on Aae® equivalent to a resul-
tant suwrface force AF, as also shown in Figure 3.1, (For simplicity, body forees and surface forces
acting on the body as a whole are not drawn in
Figure 3.1.) Notice that A§ are not necessar-
ily in the direction of the unit normal vector .
The Cauchy traction principle postulates that the
limit when the area Aa® shrnks to zero, with p
remaining an interior point, exists and is given by
- Ag

tim = lim

Aa 0 Ag® (3:5)

Obviously, this limit is meaningful only if Aae®
degenerates not into a curve but into a point p.
The vector £ is called the Cauchy stress vee-
tor or the Cauchy traction vector (force per umnit
area). It is important to note that, in general, f3;, depends not only on the position of p on Aa®
but also the orientation of surface Aa®, i.e.. on its external normal 7. This dependence is there-
fore indicated by the subscript ., ¥ Thus, for the infinity of cutting planes imaginable through
point p. cach identified by a specific #i, there is also an infinity of associated stress vectors f;, for
a given loading of the body.

We incidentally mention that a continuous distribution of surface forces acting across some
surface is, in general, equivalent to a resultant force and a resultant torque. In (3.5) we have made
the assumption that, in the limit at p. the torque per unit area vanishes and therefore there is no
remaining concentrated torque, or couple stress. This material is called the non-polar contimunm.
For a discussion of couple stresses and polar media, the reader is referred to Eringen, 1967.

Figure 3.1.
Surface foree on surface element Aa®.

3.4 Cauchy lemma

To determine the dependence of the stress vector on the exterior normal, we next apply the
principle of balance of linear momentum to a small tetrahedron of volume Av having its vertex
at p, three coordinate surfaces Aag, and the base Aa on a with an oriented normal @ (Figure
3.2). The stress vector '* on the coordinate surface x; = const, is denoted by —7}.

*The assumption that the stress vector g, depends only on the outer normal vertor i and not on differential
grometric property of the surface such as the curvature, has been introduced by Cauchy and is referred to as the
Canchy assumption.

WGinee the exterior normal of a coordinate surface £y = const. s in the dircction of —zy, without loss in
generality, we denote the stress vector acting on this eoordinate surface by —f3 rather than fi.
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_ﬂiﬁa:i gf&{:

Figure 3.2. Equilibrium of an infinitesimal tetrahedron,

We now apply the equation of balance of linear momentum (Sect.4.1) to this tetrahedron,

gfdl'—f ﬂ.tfﬂ;.-Jc-f fnyda = = oiidv .
Av Aay Aa Dt S

The surface and volume integrals may be evaluated by the mean value theorem:
s re Il ] D - e #
" f*Av = tAay + b Aa = Di (o' Av) , (3.6)

where p*, f*. and @ are, respectively, the values of p, f and ¥ at some interior points of the
tetrahedron and tha and t} are the values of f3 and #; on the surface Aa and on coordinate
surfaces Aay. The volume of the tetrahedron is given by

1
Av = Ehﬂ.a ; (3.7)
where h is the perpendicular distance from point p to the base Aa. Moreover, the area vector
Ad is equal to the sum of coordinate area vectors, that is,

Ad = iiAa = Aayiy . (3.8)
Thus
Aay = mpda . (3.9)
Inserting (3.7) and (3.9) into (3.6) and canceling the common factor Aa, we obtain
l s e ] - I EE L i
30 J'h =ty + ti = 3t (o*7"h) . (3.10)

a6
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Now, letting the tetrahedron shrink to point p by taking the limit h — 0 and noting that in this
limiting process the starred quantities take on the actual values of those same quantities at point
p. we have

"[IT,'I = «“kl’lk " (3.1])

which is the Cauchy stress formula. Equation (3.11) allows the determination of the Cauchy stress
vector at some point acting across an arbitrarily inclined plane, if the Cauchy stress vectors acting
across the three coordinate surfaces through that point are known.
The stress vectors £ are, by definition, independent of 7. From (3.11) it therefore follows
that
'ﬂ—m = ﬁap . (3.12)

The stress vector acting on a surface with the unit normal 7 is equal to the negative stress vector
acting on the corresponding surface with the unit normal —ii. In Newtonian mechanics this
statement is known as Newton's third law. The calenlations show that this statement is valid for
stress vector.

We now introduce the definition of the Canchy stress tensor. The ty; component of the Cauchy
stress tensor £ is given by the [th component of the stress vector f; acting on the positive side of
the kth coordinate surface:

th = Ly or ty=1k-1 . (3.13)
The first subscript in tyy indicates the coordinate surface r; = const. on which the stress vector i
acts, while the second subscript indicates the direction of the component of #;.. For example, a4
is the zz-components of the stress vector f2 acting on the coordinate surface rp = const.. Now,
if the exterior normal of x2 = const. points in the positive direction of the rs-axis, fz3 points
in the positive direction of the xrs-axis. If the exterior normal of 2 = const. is in the negative
direction of the rs-axis, t33 is directed in the negative direction of the rs-axis. The positive stress
components on the faces of a parallelepiped built on the coordinate surfaces are shown in Figure
3.3. The nine components ty of the Canchy stress tensor $ may be arranged in a matrix form

ty h2 iy
t=| tz1 taa taz | (e @1dy). (3.14)
Iy lao g

Considering (3.13), the Canchy stress formmla (3.11) reads
hm=i-t, (3.15)
which says that the Cauchy stress vector acting on any plane through a point is fully characterized
as a linear function of the stress tensor at that point, The normal component of stress vector,

iy = f-,':,-“ A=d-t-0, (3.16)

is called the normal stress and is said to be tensile when positive and compressive when negative,
The stress vector directed tangentially to surface has the form

-

B =i —taii =i -t — (i - - A . (3.17)

The size of T; is known as the shear stress. For example, the components tyy, $o9 and te3 in Figure
3.3 are the normal stresses and the mixed components #y3, ty3, ete. are the shear stresses,

ar
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Tl Figure 3.3. The components of the stress tensor.

If, in some configuration, the shear stress is identically zero and the normal stress is inde-
pendent of i, the stress is said to be spherical. In this case, there is a scalar field p, called the
pressure, such that
(@) = —pAl and t=—pl. (3.18)

3.5 Other measures of stress

So far, we have represented short-range intermolecular forces in terms of the Cauchy stress vector
ti or tensor t. There are, however, two other ways of measuring or representing these forces, each
of which plays a certain role in the theory of continnum mechanics. The Eulerian Cauchy stress
tensor gives the surface force acting on the deformed elementary area da in the form

dj = tizyda = (i - t)da = dd - t . (3.19)

The Cauchy stress tensor, like any other variable, has both an Eulerian and a Lagrangian descrip-
tion; the corresponding Lagrangian Cauchy stress tensor is defined by T(X,t) := t(£(X.1).1).
We make, however, an exception in the notation and use t(X,t) for the Lagrangian description
of the Cauchy stress tensor. The Eulerian Cauchy stress tensor (1) arises naturally in the
Eulerian form of the balance of linear momentum: the corresponding Lagrangian form of this
principle cannot, however, be readily expressed in terms of the Lagrangian Cauchy stress tensor
t(X.1).

A simple Lagrangian form of the balance of linear momentum can be obtained if a stress
measure is referred to a surface in the reference configuration. This can be achieved by introducing
the so-called first Piola-Kirchhoff stress tensor T as a stress measure referred to the referential
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area element dA:

dj = di-t=:dA-TV . (3.20)
Here, the tensor T'Y gives the surface foree acting on the deformed area d@ at 7 in terms of
the eorresponding referential element dA at the point X. Thus, TV is a measure of the force
per unit referential area, whereas both the Eulerian and Lagrangian Caunchy stresses t(r. t) and
t(f.t} are measures of the force per unit spatial area. The relationship between TV and t is
found using the transformation (1.75) between the deformed and undeformed elementary areas,
The result ean be expressed in either of the two equivalent forms

TNX t) = JF ¢ X,1t), t(X,0)=J'"F-TY(X,1). (3.21)

The surface-force vector d in (3.20) acts upon the displaced point F, whereas the surface-clement
vector dA is referred to the reference point X. The first Piola-Kirchhoff stress tensor TV is
therefore a two-point tensor. This can also be observed from the componental form of (3.21):

Tyl (X, 1) = J X ptia(X, 1) ta(X.t) = J e kT (X 1) (3.22)

The constitutive equations for a simple materials (see equation (5.37) in Chapter 5) are
expressed most conveniently in terms of another measure of stress, known as the second Piola-
Kirchhoff stress tensor. This quantity, denoted by T gives, instead of the actual surface force
d§ acting on the deformed area element dd, a force dG related to dg in the same way as the
referential differential dX is related to the spatial differential dF. That is

dG = F' -dg , (3.23)
in the same manner as dX = F~'. df. Defining T by
dG =:dA-T® (3.24)
we find the first and second Piola-Kirchhoff stresses are related by
T2 =), p-T T =@ . pT | (3.25)

Comparing this result with (3.21), we obtain the corresponding relationship between the second
Piola-Kirchhoff stress tensor and the Lagrangian Canchy stress tensor:

TNX t)=JF ' . (X.t)-F7, (X, t)=J'F.T*X t)-FT . (3.26)

Sinee the transformed surface force dG may be considered to act at the referential position X
rather than at the spatial position 7, the second Piola-Kirchhoff stress tensor is an ordinary (a
one-point) rather than a two-point tensor. This can also be seen from the componental form of
(3.25):

Tid (X, t) = IXgaXpatu(X ) | ti(X,t) = I Vap a1 Thid (X,t) (3.27)

The foregoing expressions may be used as a source for the linearized theory in which the
displacement gradient H is much smaller when compared to unity, hence justifying linearization.
To this end, we carry the linearized forms (1.106)y 2 into (3.21); and (3.26), and obtain

TV = (1+wH)t-H-t+O(|H|P),

) ) (3.28)
T (l+teH)t—H" -t—t-H+O(|H|* .

i
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The last equation demonstrates that the symmetry of tensor T'®) has not been violated by
linearization process. Conversely,

t

]

(1-trH)TY + HT. TV 4+ O(|H|]?)

' = s : . (3.29)
(1-tt H)T® + HT.T® 4+ T® . H + O(|HI]?) .

Supposing, in addition, that stresses are small compared to unity (the infinitesimal deformation

and stress theory), then
) e pl2) o g (3.30)

showing that, when considering infinitesimal deformation and stress, a distinction between the
Cauchy and the Piola-Kirchhoff stresses is not necessary.
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